Name of Scholar	: Ms. Sonika
Name of Supervisor	: Dr. Saiqa Ikram
Department	: Chemistry
Title of thesis	: "Development of Calixarene-based molecules
	in ion selective electrodes"

ABSTRACT

This presented thesis deals with the use of ion-selective electrode (ISE) membranes to study selective binding, known also as *molecular recognition*. On the one hand, molecular recognition of charged species by lipophilic neutral or charged ligands, incorporated into ISE membranes, is the basic principle of ISEs design, on the other hand, molecular recognition of electroinactive species affecting the response of ISEs can be used for broadening their application.

Potentiometric polymeric membrane electrodes based on electrically neutral ionophores are a useful analytical tool for the detection of heavy metal ions from environmental and industrial waste water. PVC based membrane containing p-tertbutylcalix[4]arenethioether derivative active along with as material sodiumtetraphenylborate (NaTPB) as solvent mediator and dibutylphthalate as a plasticizer. Excellent selectivity for Hg²⁺ ions is indicated by match potential method method and fixed interference with the containing p-tertbutylcalix[4]arenethioether.

Name of Scholar	: Ms. Sonika
Name of Supervisor	: Dr. Saiqa Ikram
Department	: Chemistry
Title of thesis	: "Development of Calixarene-based molecules
	in ion selective electrodes"

We discussed a highly electroactive material Mo₂[(OAc)₂(H₂-calix[4]arene)] used as a neutral carrier for Cd^{2+} ions in this thesis. We introduced a new calixarene molecule *p-tert*-butyl-thiacalix[4]arene derivative as ionophore for thorium(IV) selective polymeric membrane electrode. The resulting data clarified that the electrode shows a Nernstian slope of 14.9 ± 0.6 mV per decade for Th(IV) ions over a broad working concentration range of 8.0×10^{-8} to 1.0×10^{-1} mol/L. This experimental study revealed that an electroactive material *p-tert*-butylbiscalix[4]arene can be used as an ionophore in the preparation of PVC based ion selective electrode and we found that it shows ionophoric binding property for uranyl cation. This electrode shows excellent selectivity for UO_2^{2+} -cations with respect to most of the common cations including inner transition and heavy metal ions. In the proposed work, we used *p-tert*-butylcalix[4]arene derivative (L) as a suitable lipophilic neutral ionophore for the construction of PVC based membrane electrode for selective determination of europium ion.