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On modified Dunkl generalization of Szász-operators via –  
q calculus  
 
M. Mursaleen and Md. Nasiruzzaman 
 
Department of Mathematics, Aligarh Muslim University, Aligarh–202002, India 
mursaleenm@gmail.com; nasir3489@gmail.com 
 
Abstract: The purpose of this paper is to introduce a modification of sequence of Dunkl generalization of exponential 

functions via q -calculus which is based on a continuously differentiable function   on )[0, . Uniform 

approximation by such a sequence has been studied and degree of approximation by the operators has been obtained. 
Moreover, We obtain some approximation results via well known Korovkin’s type theorem, weighted Korovkin’s type 
theorem convergence properties by using the modulus of continuity and the rate of convergence of the operators for 
functions belonging to the Lipschitz class is presented. 
Keywords and phrases: q -integers; Dunkl analogue; Szász operator; q - Szász-Mirakjan-Kantrovich; modulus of 

continuity; Peetre’s K-functional. 
AMS Subject Classification (2010): 41A25, 41A36, 33C45. 

 
1.  Introduction and preliminaries 
In 1912, S.N Bernstein [3] introduced the following sequence of operators 

[0,1][0,1]: CCBn   defined by  
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for Nn  and [0,1]Cf  . 

In 1950, for 0x , Szász [27] introduced the operators  
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In the field of approximation theory, the application of q -calculus emerged as a new area in the 

field of approximation theory. The first q -analogue of the well-known Bernstein polynomials was 

introduced by Lupa s  by applying the idea of q -integers [12]. In 1997 Phillips [34] considered 

another q -analogue of the classical Bernstein polynomials. Later on, many authors introduced q
-generalizations of various operators and investigated several approximation properties 
[13,14,15,16]. 
We now present some basic definitions and concept details of the q -calculus which are used in 

this paper. 
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Definition 1.1.  For 1,|<| q  the basic (or q -) number  q  is defined by 
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Definition 1.2.  For 1,|<| q  the basic (or q -) the q -factorial   !qn  is defined by 
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Definition 1.3.  For 1,|<| q  the generalized basic (or q -) binomial coefficient 
q
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defined by  
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For 1)|<(|,, qq C , the basic (or q -) shifted factorial  );( q  is defined by (see, for 

example, [19], [21] and [22]; see also the recent works [20,23] dealing with the q -analysis) 
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 so that  
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 and 
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where, as usual, C  denotes the set of complex numbers and N  denotes the set of positive 
integers with 
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  }.{0,1,2,={0}:=0 NN  

 For convenience, we write 

    nrnnr qaqaqaa );();(=;,, 11   (1.9) 

 and 
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In our investigation, we shall make use of the basic (or q -) hypergeometric function sr with 

r  numerator and s  denominator parameters, which is defined by (see, for example, [22, p. 347, 
Eq. 9.4 (272)]) 
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 provided that the generalized basic (or q -) hypergeometric series in [22] converges. 

Theorem 1. (The q -Binomial Theorem)For 1,|<| q  the basic (or q -) binomial theorem is 

given by 
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Remark 1. The basic (or q -) binomial theorem (1.12) (also known as Heine’s Theorem) 

simplifies considerably to the following form when we set )(= 0N nq n : 
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Definition 1.4.  For 1,|<| q  the basic (or q -) exponential function )(zeq  of the first kind is 

defined by  
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where we have used the special case of the q -binomial theorem (1.12) when 0= .  

Definition 1.5.  For 1,|<| q  the basic (or q -) exponential function )(zEq  of the second kind 

is defined by  
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where we have used the limit case of the q -binomial theorem (1.12) when z  is replaced by 

z

 

and  .  
Remark 2. It is easily seen by applying the definitions (1.13) and (1.14) that 
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Our investigation is to construct a linear positive operators generated by generalization of 
exponential function for defined by [20]  
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The recursion formula for   is given by  
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 Sucu defined a Dunkl analogue of Szász operators via a generalization of the exponential function 
[20] as follows: 
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 where N nCfx    0,),[0,   0,  .  

Cheikh et al., stated the q -Dunkl classical q -Hermite type polynomials and gave definitions of 

q -Dunkl analogues of exponential functions and recursion relations for 
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An explicit formula for )(, nq  is  
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Gürhan Içöz gave the Dunkl generalization of Szász operators via q -calculus as:  
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for 1<<0  0,  ,
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> qx   and ).[0,Cf  

Previous studies demonstrate that providing a better error estimation for positive linear operators 
plays an important role in approximation theory, which allows us to approximate much faster to the 
function being approximated. In [5, 6], various better approximation properties of the 
Szász-Mirakjan-Kantrovich operators, and q -Szász-Mirakjan-Kantrovich operators, were 

investigated. 
Motivated essentially by by Gürhan Içöz, the recent investigation of Dunkl generalization of 
Szász-Mirakjan operators via q -calculus the Uniform approximation by such a sequence has been 

studied and degree of approximation by the operators has been obtained which is based on a 
continuously differentiable function  on )[0,  by 0=(0)  and 1)(inf  xx R . We 

have showed that our modified operators give a degree of approximation by. We have proved 
several approximation results. Several other related results have also been considered. 
 
2.  Construction of operators and moments estimation 
We modify the q  Dunkl analogue of Szász-operators by [2].  
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 where qq xe ,,    ),(    are defined in (1.17),(1.19) and )[0, Cf  with 0  and  
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 Note that the function 2=)( xxx   satisfies the conditions 1 and 2. If t= , then 

qnqn DL ,, = . It is easily seen that 
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Lemma 2.1.  Let .) ; (.,


qnL  be the operators given by (2.1). Then for each continuously 

differentiable function   on R , we have we have the following identities: 
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Now by separating to the even and odd terms and using (2.3), we get  
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We know the inequality  
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Similarly on the other hand we have  
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Which completes the proof.  

Lemma 2.2.   Let the operators .) ; (.,


qnL  be given by (2.1). Then for each continuously 

differentiable function )(x  on R , we have 

1.   0=));((, xxL qn   , 

2.   
q

qqn n

x
xxL

][

)(
]2[1);))((( 2

,

  .  

3.  Main results 
We obtain the Korovkin’s type approximation properties for our operators defined by (2.1). The 
Korovkin theory is an important area of study in approximation theory; see [3]. Briefly speaking, 
the Korovkin theorem says that if a sequence of linear positive operators approximates uniformly 

the test functions t1,  and 2t , then it approximates all continuous functions defined on a bounded 
interval. This theorem was extended to unbounded intervals and a weighted Korovkin type theorem 
in a subspace of continuous functions on the real axis R  was proved in [8, 9]. Also it was shown 

that these test functions can be replaced by 2,1,   under certain additional conditions on   (see 

Theorem 3.3). We show here that the operator defined in (2.1) satisfies the required conditions for 
the weighted Korovkin type theorem. 

Let )( RBC  be the set of all bounded and continuous functions on )[0,= R , which is linear 
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normed space with  
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Theorem 3.1.  Let .) ; (.,


qnL  be the operators defined by (2.1). Then for any function 

2   ,)[0,   HCf ,  
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n




 

is uniformly on each compact subset of )[0, , where 
2

1
>   ),,

2

1
[ bbx .  

Proof. The proof is based on Lemma 2.1 and well known Korovkin’s theorem regarding the 
convergence of a sequence of linear and positive operators, so it is enough to prove the conditions  

  } {   0,1,2,=   ,)(=);(lim , 


nasjxxL jj
qn

n
  

uniformly on [0,1] . 

Clearly )(  0
][

1
 n

n q

 we have 

  .)(=);(lim   ),(=);(lim
22

,, xxLxxL qn
n

qn
n

 


 

Which complete the proof.  

We recall the weighted spaces of the functions on R , which are defined as follows:  

    ,)(|)(|:=)( xMxffP f  R  

    ,)[0,)(:=)(   CPffQ RR   
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where 2)(1=)( xx    is a weight function and fM  is a constant depending only on f . 

Note that )( RQ  is a normed space with the norm 
)(

|)(|
sup= 0 x

xf
f x  |||| .  

Lemma 3.2. ([7])  The linear positive operators 1   , nLn  act from )()(   RR  PQ  if 

and only if  

  ),();( xKxLn  ||||  

where 21=)( xx  , Rx  and K  is a positive constant.  
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Theorem 3.3. ([7])  Let 1}{ nnL  be a sequence of positive linear operators acting from 

)()(   RR  PQ  and satisfying the condition  
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Theorem 3.4.  Let .) ; (.,
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qnL  be the operators defined by (2.1). Then for each function 
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Proof. From Lemma 2.1 and Theorem 3.3 for 0= , the first condition is fulfilled. Therefore  

  0.=1)(1;lim , 
 |||| 


xL qn

n
 

Similarly From Lemma 2.1 and Theorem 3.3 for 1,2=  we have that  

  
2

)[0,
2

,

)[0, )(1

1
sup

]2[

1

)(1

|)();(|
sup

xnx

xxL

xq

qn

x 










 

    ,
]2[

1
=

qn
 

which imply that  

  0.=)();(lim , 
  |||| xxL qn

n



 

 
2

)[0,
2

22
,

)[0, )(1

)(
sup

][

|1]2[1|

)(1

|)();(|
sup

x

x

nx

xxL

xq

qqn

x 















 

  2
)[0,

2 )(1

1
sup|1]2[1|

]4[

1

xn x
q

q 






 

which imply that  
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This complete the proof.  
 
4.  Rate of Convergence 
Here we calculate the rate of convergence of operators (2.1) by means of modulus of continuity and 
Lipschitz type maximal functions. 

Let ][0, BCf , the space of all bounded and continuous functions on )[0, , )(x  is a 
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continuously differentiable function on R  and N n
n

x     ,
2

1
. Then for 0> , the 

modulus of continuity of f  denoted by ),(  f  gives the maximum oscillation of f  in any 

interval of length not exceeding 0>  and it is given by  
 ).0,   ,|)()(|sup=),(
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  (4.1) 

It is known that 0=),(lim 0  f  for )[0, BCf  and for any 0>  one has  
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Theorem 4.1.  Let .) ; (.,


qnL  be the operators defined by (2.1). Then for )[0, BCf  we 

have  
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where )[0,BC  is the space of uniformly continuous bounded functions on    ,R ),(  f  is 

the modulus of continuity of the function )[0, BCf  defined in (4.1) and  
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Proof. We prove it by using (4.1), (4.2) and Cauchy-Schwarz inequality we can easily get  
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if we choose )(,= xn   and by applying the result (2.2) of Lemma 2.2 complete the proof.  

Remark 4.2. For the operators .) ; (.,qnD  defined by (1.20) we may write that, for every 

0  ),[0,  xCf B  and Nn  

   ,;2|)();(| ,, xnqn fxfxfD   (4.4) 

where by [16] we have  
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 Now we claim that the error estimation in Theorem 4.1 is a generalization of (4.4) provided 

)[0, BCf  and )(x  is a continuously differentiable function on R . Indeed, for 

xx =)(  and Rx , under these conditions, we notice that |)()(||| xttx   , for every 
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Now we give the rate of convergence of the operators );(, xfL qn


 defined in (2.1) in terms of the 

elements of the usual Lipschitz class )(MLip . 

Let )[0, BCf , 0>M  and 1<0  . In [1], the Lipschitz type maximal function space 

on RE  is defined as  
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where f  is bounded and continuous function on R , M  is a positive constant, 1<0   

and )(x  continuously differentiable function on R . 

In [17], B.Lenze introduced a Lipschitz type maximal function f  as follows:  
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qnL  be the operator defined in (2.1).Then for each 
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Which complete the proof.  

Let )[0,BC  denote the space of all bounded and continuous functions on )[0,= R  and  
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Theorem 4.4.  Let .) ; (.,


qnL  be the operator defined in (2.1). Then for any )(2  RBCg  we 

have  
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where )(, xn   is given in Theorem 4.1.  

Proof. Let )(2  RBCg , then by using the generalized mean value theorem in the Taylor series 
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From (4.10) we have    
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This completes the proof from 2.2 of Lemma 2.2.  
The Peetre’s K -functional is defined by  
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Theorem 4.5  Let .) ; (.,
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qnL  be the operator defined in (2.1) and )[0,BC  be the space of all 

bounded and continuous functions on R . Then for any continuously differentiable function 

)(x  on R  and )(  RBCf  we have 

  
|);(| , fxfL qn 
 

  



































  )(

)(,)(,
2 4

1,min
4

;2
R

||||
BC

xnxn ffM  
 , 

where M  is a positive constant, )(, xn   is given in Theorem 4.3 and );(2  f  is the second 

order modulus of continuity of the function f  defined in (4.14).  

Proof. We prove this by using the Theorem 4.4  

  |||);(||);(||);(| ,,, gfgxgLxgfLfxfL qnqnqn  
 

   
)(2

)(,

)( 2
2  

RR
||||||||

BC

xn

BC
ggf 

 

 From (4.10) clearly we have    
)[0,2)[0,  

BCBC gg |||||||| . 

 Therefore,  

  ,
4

2|);(|
)(2

)(,

)(, 







  RR

||||||||
BC

xn

BCqn ggffxfL  
 

where )(, xn   is given in Theorem 4.1. 
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By taking infimum over all )(2  RBCg  and by using (4.12), we get  

  







 .

4
;2|);(| )(,

2,
xn

qn fKfxfL  
 

Now for an absolute constant 0>Q  in [7] we use the relation  

  }.)(1,min);({);( 22 |||| ffQfK    

This complete the proof.  
 
Conclusion. 
Purpose of this paper is to introduce a modification of sequence of Dunkl generalization of 
exponential functions via q -calculus which is based on a continuously differentiable function   

on )[0,  by 0=(0)  and 1)(inf  xx R . Here we have defined a Dunkl generalization 

of these modified operators. This type of modifications enables to obtain the degree of 

approximation by continuously differentiable function   on the interval R  rather than the 
classical Dunkl Szász operators via q -calculus [16]. We obtained some approximation results via 

well known Korovkin’s type theorem. We have also calculated the rate of convergence of operators 
by means of modulus of continuity and Lipschitz type maximal functions. 
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1. Introduction 
The notion of Lorentzian concircular structure manifolds (briefly nLCS)( -manifolds) with an 

example was introduced by Shaikh [11], which generalize the notion of LP-Sasakian manifolds 
introduced by Matsumoto [7] and also by Mihai and Rosca [8]. Then Shaikh and Baishya [12], [13] 
investigated the applications of nLCS)( -manifolds to the general theory of relativity and 

cosmology. The nLCS)( -manifolds are also studied by Atceken et al. [1], [2] and many authors. 

In 1982 Hamilton [5] introduced the notion of Ricci flow to find a canonical metric on a smooth 
manifold. It has become a powerful tool for the study of Riemannian manifolds, especially for those 
manifolds with positive curvature. Perelman [9], [10] used Ricci flow and its surgery to prove 
Poincare conjecture. The Ricci flow is an evolution equation for metrics on a Riemannian manifold 
defined as follows.  

ijij Rtg
t

2=)( 

 , 

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A soliton to the Ricci flow is 
called Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling. A 
Ricci soliton ),,( Vg  on a Riemannian manifold ),( gM  is a generalization of Einstein metric 

such that [6]  

0=22 gSgLV  , 

where S  is the Ricci tensor and VL  is the Lie derivative along the vector field V  on M  and   

is a real number. The Ricci soliton is said to be shrinking, steady and expanding as   is negative, 
zero and positive respectively. 
As a generalization of Ricci solitons, the notion of  -Ricci solitons was introduced by Cho and 
Kimura [3]. This notion has also been studied in [3] for Hopf hypersurfaces in complex space 
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forms. An  -Ricci soliton is a tuple ),,,( Vg , where V  is a vector field on M .   and   are 
constants and g  is a Riemannian metric satisfying the equation  

 0,=222   gSgLV  (1.1) 

 where S  is the Ricci tensor associated to Riemannian metric g . In particular, if 0=  then 

),,( Vg  is Ricci soliton. 
The interest in studying Ricci solitons has considerably increased and has been carried out in many 
contexts; on Kenmotsu manifolds,  -Sasakian manifolds, trans-Sasakian manifolds, Lorentzian 
 -Sasakian manifolds, nLCS )( -manifolds, f -Kenmotsu manifolds respectively. Recently A. M. 

Blaga studied the  -Ricci soliton on Lorentzian para-Sasakian manifolds and on para-Kenmotsu 
manifolds. In this paper we use semi-symmetry, pseudo-symmetry conditions on pseudo-projective 

curvature tensor i.e., ),(= PgQLPR P , 0=PR  , ),(= RgQLRP R  and 0=RP   to 

study  -Ricci solitons of nLCS)(  manifolds. 

 
2. Preliminaries 
An n -dimensional Lorentzian manifold M  is a smooth connected paracompact Hausdarff 
manifold with a Lorentzian metric g , that is, M  admits a smooth symmetric tensor field g  of 

type (0,2)  such that for each point Mp , the tensor RMTMTg ppp :  is a non-degenerate inner 

product of signature ),........,,(   where MTp  denotes the tangent vector space of M  at p  

and R  is the real number space. A non-zero vector MTv p  is said to be timelike (resp., 

non-spacelike, null, spacelike) if it satisfies 0<),( vvg p  (resp., 0 , 0= , 0> ). The category to 

which a given vector falls is called its casual character.  
Definition 1.  In a Lorentzian manifold ),( gM  a vector field P  defined by  

)(=),( XAPXg , 

for any )(MX   is said to be a concircular vector field if  

)}()(),({=))(( YAXYXgYAX   , 

where   is a non-zero scalar and   is a closed 1-form.  
Let nM  be a Lorentzian manifold admitting a unit timelike concircular vector field   and called 
it as the characteristic vector field of the manifold. Then we have  

 1,=),( g  (2.1) 

since   is a unit concircular vector field, it follows that there exits a non-zero 1-form   such that 

for  
 ),(=),( XXg   (2.2) 

the equation for the following form holds.  
 0,)},()(),({=))((   YXYXgYX  (2.3) 

that is 

 ],)([=)(  XXX   (2.4) 

for all vector fields YX ,  where   denotes the operator of covariant differentiation with respect to 
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the Lorentzian metric g and  is a non-zero scalar function satisfies  

 ),(=)(==)( XXdXX   (2.5) 

 being a certain scalar function given by )(=   . If we put  

 ,
1

= 


 XX   (2.6) 

then from (2.3) and (2.6) we have  
 ,)(=  XXX   (2.7) 

for which it follows that   is a symmetric (1,1)  tensor and called the structure tensor of the 

manifold. Thus the Lorentzian manifold nM  together with the unit timelike concircular vector 
field  , its associated 1-form   and (1,1)  tensor field   is said to be a Lorentzian concircular 

structure manifold (briefly nLCS )(  manifold) [11]. Especially if we take 1= , then we can obtain 

the LP-Sasakian structure of Matsumoto [7]. In a nLCS )( -manifold, the following relations hold.  

   ),()(),(=),(,0,=1,=)( YXYXgYXg    (2.8) 

   ,)(=2  XXX   (2.9) 

 },)()()(2),({=))(( XYYXYXgYX   (2.10) 

},)()(){(=),( 2 YXXYnYXR   (2.11)

},)(),(){(=),( 2 YZZYgZYR   (2.12)

)}.(),()(),(){(=)),(( 2 YZXgXZYgZYXR       (2.13) 

3.    -Ricci soliton on nLCS)( -manifolds. 
Let ),,,( gM   be an n-dimensional Lorentzian concicular structure manifold and let 

)),,,(,( gM  be a nLCS )(  -Ricci soliton. Then the relation (1.1) implies  

0=)()(2),(2),(2),)(( YXYXgYXSYXgL   , 

i.e.,  
 ).()(2),(2),)((=),(2 YXYXgYXgLYXS    (3.1) 

Here gL  denotes the Lie derivative of Riemannian metric g  along a vector field  , by the 

definition of Lie derivative we have  
 ).,(),(=),)(( XgYgYXgL YX    (3.2) 

Using (2.4) in (3.2) we obtain  
 )}.()(),({2=),)(( YXYXgYXgL    (3.3) 

Using (3.1) and (3.3) we can write  
 ).()()(),()(=),( YXYXgYXS    (3.4) 

Thus we state the following theorem:  
Theorem 1.  An nLCS )(  -Ricci soliton )),,,(,( gM  is an  -Einstein manifold.  

In particular if 0=  in (3.4), then it reduces to  

 ).()(),()(=),( YXYXgYXS    (3.5) 
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Thus we state the following:  
Corollary 1.  An nLCS )( -Ricci soliton )),,(,( gM  is an  -Einstein manifold.  

 

4.  -Ricci soliton on pseudo-projective pseudo-symmetric nLCS)( -manifolds. 

An nLCS)(  manifold M  is said to be pseudo-symmetric if M  satisfies the condition

),(= PgQLPR P . Where PL  is some smooth function on M  and P  is the 

pseudo-projective curvature tensor and it is given by  

].),(),([
1

]),(),([),(=),( YZXgXZYgb
n

a

n

r
YZXSXZYSbZYXaRZYXP 






 


  (4.1) 

Using (2.13), (3.5) in (4.1) we get  
 

)],(),()(),([
1

)()(=)),(( 2 YZXgXZYgb
n

a

n

r
baZYXP  














 


  (4.2) 

].)(),([
1

)()(=),( 2 YZZYgb
n

a

n

r
baZYP  














 


  (4.3) 

Let us consider  

 )),;,,)(,((=),;,,)(( YZVUPgQLYZVUPR P   (4.4) 

L.H.S of (4.4) takes the form  
ZYRVUPZVYRUPZVUYRPZVUPYRYZVUPR ),(),()),(,(),),((),(),(=),;,,)((    (4.5) 

Taking inner product of (4.5) with   and by virtue of (2.12) and (4.2) we can obtain  

),,,()(=)),,;,,)((( 2 YZVUPYZVUPRg    

  
)],(),(),(),([

1
)()()( 22 ZUgVYgZVgUYgb

n

a

n

r
ba 














 


   (4.6) 

R.H.S of (4.4) takes the form  

.),)((),()(=),;,,)(,( ZVUYPZVUPYYZVUPgQ     

            ZYRVUPZVYUP )(),())(,(     (4.7) 

Taking inner product of (4.7) with   and by using the definition of endomorphism i.e.,  

YZXgXZYgZYX ),(),(=)(   and (4.2) we can obtain 

      ),,,(=)),,;,,)(,(( YZVUPYZVUPgQg   

)].,(),(),(),([
1

)()( 2 ZUgVYgZVgUYgb
n

a

n

r
ba 



















   (4.8) 

Using equations (4.6) and (4.8) in (4.4) we can get 

Either )(= 2  PL  or  

0.=)],(),(),(),([
1

)()(),,,( 2 ZUgVYgZVgUYgb
n

a

n

r
baYZVUP 














 


   (4.9) 
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Let },....,,{ 21 neee  be an orthonormal basis of the tangent space at each point of the manifold. 

Putting ieYU ==  in (4.9) and taking summation over i, )(1 ni  , using equation (4.1) we 

get  

).,(
1)(

)()(
=),(

2

ZVg
nba

ba
ZVS 










 

 

 (4.10) 

Thus we can state the following:  
Theorem 2. A pseudo-projective pseudo-symmetric nLCS )(  -Ricci soliton )),,,(,( gM  is an 

Einstein manifold provided )( 2  PL .  

Similarly we obtain the same result for pseudo-projective semi-symmetric nLCS )( -manifold and 

we can state the following.  
Corollary 2. An pseudo-projectively semi-symmetric nLCS )(  -Ricci soliton )),,,(,( gM  is an 

Einstein manifold.  
In particular, if 0=  in (3.4) comparing with (4.10) and contacting we get the value of   as  

  







1)(

1))((

1)(

)(
=

2

bn

nba

bn

an
 (4.11) 

Thus, we can state the following  
 
Corollary 3.  A Ricci soliton in pseudo-projective pseudo-symmetric manifolds is given by (4.11)  
 
5.  -Ricci soliton on nLCS )( -manifold admitting the pseudo-symmetric condition 

),(= RgQLRP R . 
Let us consider  

 ]),)()[((=),)(),(( ZVURYLZVURYP R    (5.1) 

 which implies  

  ZYPVURZVYPURZVUYPRZVURYP ),(),()),(,(),),((),(),(    

 
]))(,())(,(),)((),()[(= ZYVURZVYURZVUYRZVURYLR    (5.2) 

 Taking inner product of (5.2) with   and using (4.3) and (2.13) we can get 

Either 













 


 b

n

a

n

r
baLR 1

)()(= 2  , or  

)].,(),(),(),()[(=),,,( 2 ZUgVYgZVgUYgYZVUR    (5.3) 

Let },....,,{ 21 neee  be an orthonormal basis of the tangent space at each point of the manifold. Putting 

ieYU ==  in (5.3) and taking summation over i, )(1 ni  , we get  

 ).,(1))((=),( 2 ZVgnZVS    (5.4) 

Thus we can state the following:  
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Theorem 3. An nLCS )(  -Ricci soliton )),,,(,( gM  admitting semi-symmetric condition

),(= RgQLRP R  is an Einstein manifold provided 














 


 b
n

a

n

r
baLR 1

)()( 2    

Corollary 4. An nLCS )(  -Ricci soliton )),,,(,( gM  admitting semi-symmetric condition 

0=RP   is an Einstein manifold.  
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. 
 
1  Introduction 
It is well known that in differential geometry the curvature of a Riemannian manifold plays a basic 
role and the sectional curvatures of a manifold determine the curvature tensor R  completely. A 
Riemannian manifold with constant sectional curvature c  is called a real-space-form and its 
curvature tensor R  satisfies the condition  

  }.),(),({=),( YZXgXZYgcZYXR   (1.1) 

 Models for these spaces are the Euclidean spaces ( 0=c ), the spheres ( 0>c ) and the hyperbolic 
spaces 0)<(c . 

In contact metric geometry, a Sasakian manifold with constant  -sectional curvature is called 

Sasakian-space-form and the curvature tensor of such a manifold is given by  

  }),(),({
4

3
=),( YZXgXZYg

c
ZYXR 


 (1.2) 

  }),(2),(),({
4

1
ZYXgXZYgYZXg

c  


  

  XZYYZX
c

)()()()({
4

1  


  

  }.)(),()(),(  XZYgYZXg   

These spaces can also be modeled depending on 3> c , 3= c  or 3< c . 
As a generalization of Sasakian-space-form, in [1] Alegre, Blair and Carriazo introduced and 
studied the notion of generalized Sasakian-space-form with the existence of such notions by several 

interesting examples. An almost contact metric manifold ),,,( gM   is called generalized 
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Sasakian-space-form if there exist three functions 1f , 2f , 3f  on M  such that [1]  

   }),(),({=),( 1 YZXgXZYgfZYXR   (1.3) 

   }),(2),(),({2 ZYXgXZYgYZXgf    

   XZYYZXf )()()()({3    

   })(),()(),(  XZYgYZXg   

for all vector fields X , Y , Z  on M , where R  is the curvature tensor of M  and such a 
manifold of dimension 1)(2 n , 1>n  (the condition 1>n  is assumed throughout the 

paper), is denoted by ),,( 321

12
fffM

n
. The generalized Sasakian-space-forms have been 

studied by several authors such as Alegre and Carriazo ([2], [3], [4]), Belkhelfa, Deszcz and 
Verstraelen [8], Carriazo [10], C i rnu [12], Ghefari, Solamy and Shahid [13], Gherib, Gorine and 

Belkhelfa [14], Hui and Sarkar [16], Kim [18], Narain, Yadav and Dwivedi [20], Olteanu ([21], 
[22]), Shukla and Chaubey [23], Yadav, Suthar and Srivastava [25] and many others. 
As a generalization of invariant and anti-invariant submanifolds, Bejancu [7] introduced and 
studied the notion of contact CR-submanifolds. The geometry of contact CR-submanifolds are rich 
and interesting subject. Several authors studied contact CR-submanifolds of different classes of 
almost contact metric manifolds such as [5], [6], [17], [19] and many others. 
Motivated by the above studies the present paper deals with the study of contact CR-submanifolds 
of generalized Sasakian-space-forms. The paper is organized as follows. Section 2 is concerned 
with preliminaries. Section 3 is devoted to the study of contact CR-submanifolds of generalized 
Sasakian-space-forms. We obtain many integrability conditions of the distributions of contact 
CR-submanifolds of generalized Sasakian-space-forms. We also studied the contact CR-products 
in a generalized Sasakian-space-form and obtained a necessary and sufficient condition for a 
contact CR-submanifold of a generalized Sasakian-space-form to be a contact CR-product.  
 
2.  Preliminaries 
In an almost contact manifold, we have [9]  

  0,=,)(=)(2  XXX   (2.1) 

  
  0,=)(),(=),(1,=)( XXXg   (2.2) 

  
  ),()(),(=),( YXYXgYXg    (2.3) 

  
  ),,(=),( YXgYXg    (2.4) 

  

  ),,(=))(( YgY XX    (2.5) 

where   is a connection on M . 

In a generalized Sasakian-space-form ),,( 321

12
fffM

n
, we have from (1.3) that  
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  ],)(),()[(=))(( 31 XYYXgffYX    (2.6) 

  

  XffX  )(= 31   (2.7) 

  

  ),()(}1)(2{3),()3(2=),( 32321 YXfnfYXgffnfYXS   (2.8) 

  

  ,461)(22= 321 nfnffnnr   (2.9) 

  

  })()(){(=),( 31 YXXYffYXR    (2.10) 

  

  },)(),(){(=),( 31 XYYXgffYXR    (2.11) 

  

  )},(),()(),(){(=)),(( 31 YZXgXZYgffZYXR    (2.12) 

  

  ).()(2=),( 31 XffnXS    (2.13) 

Let M  be a submanifold of a generalied Sasakian-space-form ),,( 321

12
fffM

n
. Also let   

and   be the induced connections on the tangent bundle TM  and the normal bundle MT   
of M  respectively. Then the Gauss Waingarten formulae are given by  

  ),(= YXhYY XX   (2.14) 

  

  VXAV XVX
 =  (2.15) 

for all )(, TMYX   and )( MTV  , where h  and VA  are second fundamental form 

and the shape operator (corresponding to the normal vector field V ) respectively for the 

immersion of M  into ),,( 321

12
fffM

n
. The second fundamental form h  and the shape 

operator VA  are related by [26]  

  ).,(=)),,(( YXAgVYXhg V  (2.16) 

for any submanifold M  of a Riemannian metric on ),,( 321

12
fffM

n
, the equation of Gauss is 

given by  

   XAYAZYXRZYXR ZYhZXh ),(),(),(=),(   (2.17) 

   ),)((),)(( ZXhZYh YX   

for any )(,, TMZYX   where R  and R  denotes the Riemannian curvature tensors of 
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M  and M  respectively. The covariant derivative h  of h  is defined by  

  ),,(),(),(=),)(( YZhZYhZYhZYh XXXX    (2.18) 

and the covariant derivative VX A  is defined by  

  YAYAYAYA XVVX
VXVX  

)(=)(  (2.19) 

for any )(,, TMZYX   and )( MTV  . The normal part )),(( ZYXR  of 

ZYXR ),(  from (2.17) is given by  

  ),,)((),)((=)),(( ZXhZYhZYXR YX   (2.20) 

which is known as Codazzi equation. If in particular 0=)),( ZYXR  then M  is said to be 

curvature invariant submanifold of M . 
The Ricci equation is given by  

  ),],([),),((=),),(( YXAAgUVYXRgUVYXRg VU  (2.21) 

for any )(, TMYX   and )(, MTVU  , where R  denotes the Riemannian curvature 

tensor of the normal vector bundle MT   and if 0=R  then the normal connection of M  is 
called flat [17]. 
Using (1.3) in (2.21) we get  

 ),(),(),(),([=),),(( 2 UXgVYgUYgVXgfUVYXRg    (2.22) 

   )],(),(2 UVgYXg   

   ),],([ YXAAg UV  

for any )(, TMYX   and )(, MTVU  . 

 
3.  Contact CR-submanifolds in generalized Sasakian-space-forms 
 Let M  be an isometrically immersed submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
. Then for any )(TMX   we have  

  ,= FXEXX   (3.1) 

where EX  and FX  are the tangential and normal components of X  respectively. Also for 

any )( MTV   we can write  

  ,= CVBVV   (3.2) 

where BV  and CV  are the tangential and normal components of V  respectively. Also B  

is an endomorphism of the normal bundle T  of TM  and C  is an endomorphism of the 

subbundle of the normal bundle MT  . 
The covariant derivatives of the tensor fields of E  and F  are defined by  

  ),(=)( YEEYYE XXX   (3.3) 
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and  

  )(=)( YFFYYF XXX    (3.4) 

for all )(, TMYX  . The canonical structure E  and F  on a submanifold M  are said to 

be parallel if 0=E  and 0=F  respectively. Also the covariant derivatives of B  and C  
are defined by  

  )(=)( VBBVVB XXX
  (3.5) 

and  

  ).(=)( VCCVVC XXX
   (3.6) 

Also for any )(, TMYX  , we have ),(=),( EYXgYEXg   and for any 

)(, MTVU  , we have ),(=),( VCUgCVUg  . This shows that E  and C  are skew 

symmetric tensor fields. 

Moreover for any )(TMX   and )( MTV  , the relation between F  and B  is given 

by  
  ),(=),( BVXgVFXg  (3.7) 

  
Definition 3.1. [6] Let M  be an isometrically immersed submanifold of a generalized 

Sasakian-space-form ),,( 321

12
fffM

n
. Then M  is called a contact CR-submanifold of 

),,( 321

12
fffM

n
 if there is a differentiable distribution )(: MTDpD pp   on M  

satisfying the following conditions 
)(i  D  

)(ii  D is invariant with respect to   i.e. pp DD )(  for each Mp , and 

)(iii  The orthogonal complementary distribution )(: MTDpD pp   satisfies 

MTD Pp
 )(  for each Mp   

Now from (2.1)  
  0,==  FE   

which is euqivalent to  
  0==  FE  (3.8) 

Apply   to (3.1) and using (2.1) and (3.2) we get  

  0.=and=2 CFEFIBFE    (3.9) 

Similarly apply   to (3.2) and using (2.1) and (3.1) we get  

  0.=  =2 BCEBandIFBC   (3.10) 
In view of (1.3) it follows from (2.17) that the curvature tensor R  of an immersed submanifold 

M  of a generalized Sasakian-space-form ),,( 321

12
fffM

n
 is  

   ]),(),([=),( 1 YZXgXZYgfZYXR   (3.11) 
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  ]),(2),(),([2 EZYXgEXZYgEYZXgf    

   )(),()()()()([3 YZXgXZYYZXf   

  ])(),(  XZYg .),(),( YAXA ZXhZYh   

From (1.3) and (2.20) we have  

 FYZXgfZXhZYh YX ),([=),)((),)(( 2    

                      ].),(2),( FZYXgFXZYg    (3.12) 

Theorem 3.1. There is no any curvature invariant proper contact CR-submanifold of a generalized 

Sasakian-space-form ),,( 321

12
fffM

n
 such that 02 f .  

Proof. Let M  be a curvature invariant contact CR-submanifold of a generalized 

Sasakian-space-form ),,( 321

12
fffM

n
 with 02 f . Then from (3.12) we get  

  0,=),(2),(),( FZEYXgFXEZYgFYEZXg   (3.13) 

for any )(,, TMZYX  . Putting XZ =  in (3.13) we get  

  0,=),(3 FXXEYg  

which implies that either 0=F  or 0=E , that is either M  is invariant or anti-invariant 
submanifold.  
Theorem 3.2. Let M  be a contact CR-submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
 with flat normal connection and let 02 f . If EAEA VV =  for any vector 

)( MTV   then either M  is an anti-invariant submanifold or generic submanifold of 

),,( 321

12
fffM

n
.  

Proof. Let the normal connection of M  be flat then from (2.22) we obtain  

 
),(),([=),],([ 2 UYgVXgfYXAAg VU    

   )],(),(2),(),( UVgYXgUXgVYg    (3.14) 

for any )(, TMYX   and )(, MTVU  . Taking EYX =  and CUV =  in (3.14) 

we get  

 ),,( YEYAAEYAAg UCUCUU     

   )].,(),([2= 2
2 CUCUgYYEgf  (3.15) 

If EAEA UU =  then we have 0=),()(tr 2
2 CUCUgEf  i.e., 0=),()(tr 2 CUCUgE  

as 02 f , either which implies that 0=E  that means M  is anti-invariant submanifold or 

0=CV  that means M  is generic submanifold.  
Theorem 3.3 Let M  be a contact CR-submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
. Then the invariant distribution D  is integrable if and only if the second 

fundamental form of M  satisfies ),(=),( YXhYXh   for any )(, DYX  .  
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Proof. For any vector fields YX ,  in D  we have from (2.6) and (2.14) that  

)(=],[ XYYX YX     

  )(= XY YX   

  XXYY YYXX )()(=    

    ),(),(= XYhYXhXY YX   ].)()()[( 31 YXXYff  
 
(3.16) 

Comparing the normal components of (3.16) we get  
  ).,(),(=],[ XYhYXhYXF    (3.17) 

Thus D  is integrable if and only if ),(=),( XYhYXh   for any )(, DYX  .  

Definition 3.2.  If the invariant distribution D  and anti-invariant distribution D  are totally 
geodesic in M  then M  is called contact CR-product.  
Now we characterize contact CR-products in generalized Sasakian-space-form 

),,( 321

12
fffM

n
.  

Theorem 3.4. Let M  be a contact CR-submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
. Then M  is a contact CR-product if and only if the shape operator A  of 

M  satisfies the condition  

  0=)()( 31 WXffXA W    (3.18) 

for all )(DX   and )(  DW .  

Proof. Let us take M  be a contact CR-submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
. Then for all )(, DYX   and )(,  DWZ  we have from (2.3), 

(2.6), (2.14) and (2.16) we get  

)),,((=),( WYXhgYXAg W   

  ),(= WXg Y   

  ),)((= WXXg YY    

  )},)(),(){((= 31 WYXYXgffg   ),( WXg Y  

  ),(),()()(= 31 WXgWYgXff Y   

i. e.,  

  ),(=),)()(( 31 WXgYWXffXAg YW    (3.19) 

and  

  
),(=)),,((=),( WXgWZXhgZXAg ZW    

      ))((= WXXg ZZ    

      ),()},)(),(){((= 31 WXgWZXZXgffg Z   

      ),,(),()()(= 31 XWgWZgXff Z   
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 i. e.,  

  ).,(=),)()(( 31 XWgZWXffXAg ZW    (3.20) 

Thus from (3.19) and (3.20) we get )(DXY   and )(  DWZ  if and only if the 

relation (3.18) holds.  
Theorem 3.5. Let M  be a contact CR-submanifold of a generalized Sasakian-space-form 

),,( 321

12
fffM

n
. Then the anti-invariant distribution D  is always integrable.  

Proof. For any vector fields Z , W  belongs to D  we have from (2.16) that  

  ,),(=)( ZAWZBhWf WZ   

i. e.,  

  .=],[ ZAWAWZf WZ    (3.21) 

On the other hand, we obtain  

 )),,((=),( WZUhgUZAg W   

     )),((= WZg U   

     ),)((= WZZg UU    

     )],()()(),()[(),(= 31 WUgZWZUgffUWAg Z    

     ).(   ),(= TMUanyforUWAg Z   

This implies that  

  ).(,     ,=  DWZfieldsvectoranyforZAWA WZ   (3.22) 

In view of (3.22) we have from (3.21) that 0=],[ WZf , that is )(],[  DWZ  which 

completes the proof.  
 
REFERENCES  
 
[1]   Alegre, P., Blair, D. E. and Carriazo, A., Generalized Sasakian-space-forms, Israel J. Math., 14 (2004), 157–183.  

[2]   Alegre, P. and Carriazo, A., Structures on generalized Sasakian-space-forms, Diff. Geo. and its Application, 26 
(2008), 656–666.  

[3]   Alegre, P. and Carriazo, A., Submanifolds of generalized Sasakian-space-forms, Taiwanese J. Math., 13 (2009), 
923–941.  

[4]   Alegre, P. and Carriazo, A., Generalized Sasakian-space-forms and conformal changes of the metric, Results in 
Math.,  59 (2011), 485–493.  

[5]   Atceken, M., Contact CR-submanifolds of Kenmotsu manifolds, Serdica Math. J., 37 (2011), 67-78.  

[6]   Atceken, M. and Dirik, S., Contact CR-submanifolds of Kenmotsu manifolds, Acta Univ. Sap. Math. 4 (2012), 
182-198.  

[7]   Bejancu, A., Geometry of CR-submanifolds, D. Reidel Pub. co. Dordrecht, Holland, 1986.  

[8]   Belkhelfa, M., Deszcz, R. and Verstraelen, L., Symmetry properties of generalized Sasakian-space-forms, 
Soochow J. Math.,  31 (2005), 611–616.  

[9]   Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math.  509, Springer-Verlag, 1976.  



  Contact CR-submanifolds of generalized Sasakian-space-forms 61 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 4, 2014, pp. 53-61 

[10]   Carriazo, A., On generalized Sasakian-space-forms, Proceedings of the Ninth International Workshop on Diff. 
Geom.,  9 (2005), 31–39.  

[11]   Chen, B. Y., Geometry of slant submanifolds, Katholieke Universietit Leuven, 1990.  

[12]   C i rnu, M., Cohomology and stability of generalized Sasakian-space-forms to appear in Bull. Malaysian 

Mathematical Sciences Society.  

[13]   Ghefari, R. A., Solamy, F. R. A. and Shahid, M. H., CR-submanifolds of generalized Sasakian-space-forms, JP J. 
Geom. and Topology,  6 (2006), 151–166.  

[14]   Gherib, F., Gorine, M. and Belkhelfa, M., Parallel and semi symmetry of some tensors in generalized 
Sasakian-space-forms, Bull. Trans. Univ. Brasov, Series III: Mathematics, Informatics, Physics,  1(50) (2008), 
139–148.  

[15]   Hui, S. K. and Atceken, M., Contact warped product semi-slant submanifolds of nLCS )( -manifolds, Acta Univ. 

Sapientiae Math.,  3 (2011), 212–224.  

[16]   Hui, S. K. and Sarkar, A., On the 2W -curvature tensor of generalized Sasakian-space-forms, Math. Pannonica,  
23 (2012), 1–12.  

[17]   Kentaro, Y. and Masahiro, K., Contact CR-submanifolds, Kodai Math. J.,  5 (1982), 238-252.  

[18]   Kim, U. K., Conformally flat generalized Sasakian-space-forms and locally symmetric generalized 
Sasakian-space-forms, Note di Matematica,  26 (2006), 55–67.  

[19]   Khan, V. A., Khan, K. A. and Uddin, S., Contact CR-warped product submanifolds of Kenmotsu manifolds, Thai J. 
Math., 6 (2008), 139-154.  

[20]   Narain, D., Yadav, S. and Dwivedi, P. K., On generalized Sasakian-space-forms satisfying certain conditions, Int. 
J. Math. and Analysis,  3 (2011), 1–12.  

[21]   Olteanu, A., Legendrian warped product submanifolds in generalized Sasakian-space-forms, Acta Mathematica 
Academiae Paedagogice Nyiregyhaziensis,  25 (2009), 137–144.  

[22]   Olteanu, A., A general inequality for doubly warped product submanifolds, Math. J. Okayama Univ.,  52 (2010), 
133–142.  

[23]   Shukla, S. S. and Chaubey, P. K., On invariant submanifolds in generalized Sasakian-space-forms, J. Dynamical 
Systems and Geometric Theories,  8 (2010), 173–188.  

[24]   Sreenivasa, G. T., Venkatesha and Bagewadi, C. S., Some results on 12)( nLCS -manifolds, Bull. Math. Analysis 

and Appl.,  1(3) (2009), 64–70.  

[25]   Yadav, S., Suthar, D. L. and Srivastava, A. K., Some results on 12321 ),,( nfffM -manifolds, Int. J. Pure and 

Appl. Math.,  70 (2011), 415–423.  

[26]   Yano, K. and Kon, M., Structures on manifolds, World Scientific Publishing Co., Singapore,  1984. 

 




	Vol-5 Cover
	Ist page of Vol-5
	Editorial  Vol 5
	Contents-Vol 5
	Mining Web Opinion Sources for Sentiment Analysis  11
	6.  Contact CR-submanifolds of generalized Sasakian-space-forms 53


	Vol-5 paper 4
	Vol-5 paper 5
	Vol-5 paper 6
	last Pages Vol 5
	Vol-5 back

