JMI
International Journal of
Mathematical Sciences

ISSN 0976-5913 | Vol. 5| 2014

Editor-in-Chief
Naseem Ahmad, India

Managing Editor
Mohammad Hasan Shahid, India

Associate Editors
Shehzad Hasan, India
Arshad Khan, India
M.Y. Abbasi, India

Editorial Board

Abdul Wafi, India

Ayub Khan, India

B. V. Rathish Kumar, India
B.Y. Chen, US4

GF. Piltz, Austria

H.M. Srivastava, Canada
H.P. Dikshit, India

1. Mihai, Romania

J. K. Park, South Korea
Khalil Ahamad, India
K.K. Dewan, India

K.L. Duggal, Canada
Kouei Sekigawa, Japan
M. Aslam Noor, Pakistan
M.Z. Nashed, US4

M. Rais Khan, India
Miguel Ferrero, Brazil
Sakshi Dhall, India

Sﬁ ?;rlll‘;s}l{l:a;(]ill—l;;ien India Published bY
Satya Deo Tripat, ndia DEPARTMENT OF MATHEMATICS
Sharfuddin Ahmad, India JAMIA MILLIA ISLAMIA

NEW DELHI -110025 (INDIA)



JMI
International Journal of

Mathematical Sciences
ISSN 0976-5913 | Vol. 5 | 2014

Published by
DEPARTMENT OF MATHEMATICS
JAMIA MILLIA ISLAMIA
NEW DELHI -110025 (INDIA)



Editor-in-Chief

Naseem Ahmad, India
nahmad4@jmi.ac.in

Managing Editor

Mohammad Hasan Shahid, India
hasan_jmi@yahoo.com

Associate Editors

Shehzad Hasan, India
drshehzadhasan@gmail.com
Arshad Khan, India
akhan1234in@rediffmail.com
M.Y. Abbasi, India
yahya_jmi@rediffmail.com

Editorial Board

Abdul Wafi, India
Ayub Khan India

B. V. Rathish Kumar, India
B.Y. Chen, USA
GF. Piltz, Austria
H.M. Srivastava, Canada
H.P. Dikshit, India

|. Mihai, Romania
J. K. Park, South Korea
Khalil Ahmad, India
K.K. Dewan, India

Print ISSN 0976-5913
Volume 5 | 2014

K.L. Duggal,

Kouei Sekigawa,

M. Aslam Noor,

M. Z. Nashed,

M. Rais Khan

Miguel Ferrero,

Sakshi Dhall,

S.M. Khursheed Haider,
S.M. Tariq Rizvi,
Satya Deo Tripathi,
S.R. Lopez-Permaouth,
Sharfuddin Ahmad

© 2014 Department of Mathematics, Jamia Millia Islamia

The Editor-in-Chief and Department of Mathematics, Jamia Millia Islamia assume no responsibility for the views
expressed by the authors of papers printed in the JMI International Journal of Mathematical Sciences. It is a
condition of publication that manuscripts submitted to the JMI International Journal of Mathematical Sciences
have not been published and will not be simultaneously submitted or published elsewhere. By submitting a
manuscript, the authors agree that the copyright for their paper is transferred to the Department of Mathematics,
Jamia Millia Islamia, if and when the paper is accepted for publication. The copyright covers the exclusive
reprints, photographic reproductions, microform or any other reproductions of similar nature and transactions. No
part of the publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means
- electronic, electrostatic, magnetic tape, mechanical photocopying, recording or otherwise, now known or
developed in the future - without prior written permission from the copyright holder.

JMI International Journal of Mathematical Sciences is an annual journal published by the Department of
Mathematics, Jamia Millia Islamia, New Delhi, India

Printed in India (Due to backlog Vol. 5, 2014 is published in March 2017)

Canada
Japan
Pakistan
USA
India
Brazil
India
India
USA
India
USA
India


mailto:nahmad4@jmi.ac.in
mailto:drshehzadhasan@gmail.com

JMI INTERNATIONAL JOURNAL OF

MATHEMATICAL SCIENCES

Contents

Identity Concerning Generalized Derivation on Lie ldeals of Prime Ring
Mohammad Ashraf and Nazia Parveen

Mining Web Opinion Sources for Sentiment Analysis
Ahmad Kamal

Weyl-Heisenberg Packets on Local Fields of Positive Characteristic
Ishtag Ahmad and Neyaz Ahmad Sheikh

On modified Dunkl generalization of Szasz-operators via — q calculus
M. Mursaleen and Md. Nasiruzzaman

A study On (LCS),, -Manifolds Admitting 7 -Ricci Soliton.
K.R. Vidyavathi and C.S. Bagewadi

Contact CR-submanifolds of generalized Sasakian-space-forms
Shyamal Kumar Hui

VoL. 5|2014

11

18

31

47

53



JMI INTERNATIONAL JOURNAL OF VoL 52014 |31-46
MATHEMATICAL SCIENCES

On modified Dunkl generalization of Szasz-operators via —
g calculus

M. Mursaleen and Md. Nasiruzzaman

Department of Mathematics, Aligarh Muslim University, Aligarh—202002, India

mursaleenm@gmail.com; nasir3489@gmail.com

Abstract: The purpose of this paper is to introduce a modification of sequence of Dunkl generalization of exponential
functions via (] -calculus which is based on a continuously differentiable function 7 on [O, OO) . Uniform

approximation by such a sequence has been studied and degree of approximation by the operators has been obtained.
Moreover, We obtain some approximation results via well known Korovkin's type theorem, weighted Korovkin's type
theorem convergence properties by using the modulus of continuity and the rate of convergence of the operators for
functions belonging to the Lipschitz classis presented.

Keywords and phrases: (] -integers; Dunkl analogue; Szész operator; (] - Szész-Mirakjan-Kantrovich; modulus of

continuity; Peetre’s K-functional.
AMS Subject Classification (2010): 41A25, 41A36, 33C45.

1. Introduction and preliminaries
In 1912, SN Bernstein [3] introduced the following sequence of operators

B, :C[0,1] — C[0,1] defined by

B,(f;x)= i@jxk (1-x)"™ f [%) x€0,1] (1.1)

for neN and f €C[0,1].
In 1950, for X > 0, Széasz [27] introduced the operators

S (fix)= ei@ f(%) f €C[0,). 12)

=S

In the field of approximation theory, the application of (] -calculus emerged as a new areain the
field of approximation theory. Thefirst q -analogue of the well-known Bernstein polynomials was
introduced by LupaS by applying the idea of ( -integers [12]. In 1997 Phillips [34] considered
another Q -analogue of the classical Bernstein polynomials. Later on, many authorsintroduced q

-generalizations of various operators and investigated several approximation properties
[13,14,15,16].
We now present some basic definitions and concept details of the ( -calculus which are used in

this paper.
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Definition 1.1. For |q|<1, thebasic (or (-) number [}t]q is defined by
At
1-q (1eC)
1-q
[4], = (L3)
n-1
da*=1+q+q*+-+q"t (A=neN).
k=0

Definition 1.2. For | |<1, thebasic(or q-)the q-factorial [n],! isdefined by

1 (n=0)
[n],!= (1.4)
[Tk, (neN).
k=1
Definition 1.3. For |Q|<1, the generdized basic (or -) binomia coefficient {ﬂ is
q
defined by
2 _atah
= -9 q AeCneN,) (1.5)
mq (a0, o) ( 2

For q,4,veC (]q|<1), the basic (or q-) shifted factoria (A;0), is defined by (see, for
example, [19], [21] and [22]; see also the recent works [20,23] dealing with the q -analysis)

= 1-q’
A, = —_— <1, 4,ve(), 6
(Z:0), g(l—zq“”J (lgl<L4,veC) (16)
s0 that
1 (n=0)
(4;9), = (17)
n-1 _
[10-29') (neN)
=0
and
(49), =[]e-49') (g1 4eC), )
j=0

where, as usual, C denotes the set of complex numbers and N denotes the set of positive
integers with
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N, :=NU{0} ={0,1,2,--}.

For convenience, we write

(a,-+,a,:0), = (a; ), - (a,;q), (19)

and

(a,+a;9), = (a;0). - (@;:q).. (1.10)

In our investigation, we shall make use of the basic (or ( -) hypergeometric function , @ with

I numerator and S denominator parameters, which is defined by (see, for example, [22, p. 347,
Eg. 9.4 (272)])

S I e
D, g,z [:=) (-1 g
by, b, k=0
(a;9)-(a:a), 2
(bl;q)k"'(bs;q)k (a;9),
provided that the generalized basic (or ( -) hypergeometric series in [22] converges.

Theorem 1. (The ¢ -Binomial Theorem)For | |<1, the basic (or q-) binomial theorem is
given by

(1.11)

(A OI)k _ (4z;9),
D
O — Z C@a). . (za).

Remark 1. The basic (or  -) binomia theorem (1.12) (also known as Heine’s Theorem)

simplifies considerably to the following formwhenweset A =q" (neN,):

(ak1lzl<y), @12

1(I)oq; ’q,z Z(q q) (Zq CI)

—. k=0 (q1CI)k

_ (ﬂjﬂ[_zj” 7 (akmnen)

z q
Definition 1.4. For |q|<1, thebasic (or ¢-) exponentia function €,(z) of the first kind is
defined by
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0; ;
=@ of .,z |=

(1.13)
é (a;9),

(z;9),

where we have used the special case of the ( -binomial theorem (1.12) when A = 0.
Definition 1.5. For |q[<1, thebasic(or q-) exponentia function E,(z) of thesecond kind
is defined by

E(z)—kZ(‘,JqU(q’k)k =i P _j G-2|=Czo.,

z
where we have used the limit case of the ( -binomial theorem (1.12) when Z isreplaced by —

and A —> .
Remark 2. It is easily seen by applying the definitions (1.13) and (1.14) that

Iqi n1|{eq (1-q)2)} =€’ = Iqi rrl1{ E,(1-9)2)} and  e,(2)-E,(-2)=1.(115

Our investigation is to construct a linear positive operators generated by generalization of
exponential function for defined by [20]

o0

e,0)=3%

noﬂ/y(n)
Here
2% 1
2 k!l“(k+,u+2)
7,(20) = ~=2,
I ou+—
#+2)
and
2k+1 3
2 k!l“(k+y+2)
7ﬂ(2k+1):

1
I u+—=
(“ 2)
The recursion formulafor Vi isgiven by
7, (k+1) = (k+1+2u6,,,)7,(K), k=012,

where ,u>—% and
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{0 ifk e 2N
6, =

1 ifke2N+1.
Sucu defined a Dunkl analogue of Szész operators via a generalization of the exponential function
[20] asfollows:
. 1 nx) k+2
S'(f:x):= Z ( ( 1O, j (1.16)
e, (nx) iz 7,(k) n

where x>0, f eC[0,2),u2>0, neN.
Cheikh et al., stated the -Dunkl classica ( -Hermite type polynomials and gave definitions of

1
g -Dunkl analogues of exponential functions and recursion relations for g >—— and

0<g<1l
e,q(X)= i , Xe0,0) (1.17)
n= O #q( )
n(n-1)
E q* X
wa(X) = Z , Xe0,0) (118)
n=0 #q( )
1_q2”‘9n+l+n+l
Vuq(N+1) :(T]n,q(n), neN, (1.19)
g = 0 ifn e 2N,
"Tl1 ifne2N+1.
An explicit formulafor y, . (n) is
(@*",0%) e (@507 5
(n) = L, o), neN.
e (a-ay &

And some of the special casesof y,,(n) aredefined as:

7ua@ =1 7, (D)= e » Vua(@ = (1_q . j(l_q ]’

1-q 1-¢ 1-q
l— 2u+1 1_ 2 1_ 2u+3
o
1-q J1-q | 1-q
1_ 2u+l 1_ 2 1_ 2u+3 1_ 4
o e )
1-9 A1-g A 1-9 A1l-q
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Gurhan g6z gave the Dunkl generalization of Széasz operatorsvia (] -calculus as:

a1 2 ([ X)* (1%
D”'q(f’x)_eﬂ,q([n]qx)g  © f( g ] (1.20)

for ,u>%, x>0, 0<g<1land feC[0,).

Previous studies demonstrate that providing a better error estimation for positive linear operators
plays an important role in approximation theory, which allows us to approximate much faster to the
function being approximated. In [5, 6], various better approximation properties of the
Szész-Mirakjan-Kantrovich operators, and (Q -Szasz-Mirakjan-Kantrovich operators, were

investigated.
Motivated essentially by by Girhan I¢tz, the recent investigation of Dunkl generalization of
Szész-Mirakjan operatorsvia (] -calculus the Uniform approximation by such a sequence has been

studied and degree of approximation by the operators has been obtained which is based on a
continuously differentiable functionz on [0,0) by 7(0) =0 and jnf,r+ 7' (X)=1. We

have showed that our modified operators give a degree of approximation by. We have proved
several approximation results. Several other related results have also been considered.

2. Construction of operators and moments estimation
We modify the g Dunkl analogue of Szész-operators by [2].

Let 7(X) beacontinuously differentiable functions definedon R satisfying
1. 7(0)=0,
2. |nf xeRT T’(X) 21

1
Thenforany 0<q <1, ,u>2— and neN we define
n

S 1 & ([nlgr () (-
S0 e ra0 )( o ]

= (D, ,(for™)o7)(x)

o k . 2;16’k+k
5 (Inlgz ()" | 4 1-q :
eyq([n] (X)) i Vuq(K) 1-q

where e, . (X), 7,, aedefinedin(1.17),(1.19)and f € C,[0,0) with £>0 and
C.[0,0) ={f eC[0,0) | f (t) KM (1+t)*, for some M >0, {>0}. (22

Note that the function 7(X) =X+ X* satisfies the conditions 1 and 2. If 7=t , then

2.1)

Lyq = D, - Itiseasily seen that
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Lemma 2.1. Let L;’q (.;.) be the operators given by (2.1). Then for each continuously

differentiable function 7 on R™, we have we have the following identities:
1L L&x) =1,
2. Ly (mx)=7(x),

7(x)
[n],

€. (N, T(X))] 7(X) o L (2% < 7(00% + ([1+ 244, )

3. 7(x) +[q ”[1—2/1]q e#’q([n]qf(x)) [I’]]q B

Proof.

d —1
E,u,q ([“]q Z (X)) k=0 7//1( ‘)

1 i([”]qf(x))k [1_q2/tﬁk+kj
e, (N,z0N = 7,0 | 1-9"
_ 1 = ([n], 7(x))"
[Nl e, (In],7(X) Z 7, (k-1)
=7(X)
. ) 1 o ([n]qT(X))k 1_q2;19k+k 2
. L 1X) =
L0 ) 2 7 [ g J
_ 1 i([n]qf(x))k 1-gq¥4*
[n%e, (Il & 7,(k-1) | 1-q

_ 1 i ([n]q z,(X))kJrl 1— q2y0k+l+k+l
[nlse, ([Nl iE  7.(k) 1-q '

From [16] we know that

[2u6, , +k+1], =[2u6, +K], + 9" [2u(-1)* +1],, (23)
Now by separating to the even and odd terms and using (2.3), we get

o n X k+1 . 20, 1+k+1
L;’q(z_Z;X): . 1 ([ ]qT( )) 1 q
[nlZe, (], 70N & 7,(K) 1-q

L L ,x)=

2. L (mx) =

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 5, 2014, pp. 31-46



38 M. Mursaleen and Md. Nasiruzzaman

[1+24], i (In], 7(x))** 200, +2K
[n]q e,q([Nyz(¥) iz 7.(2k)
(1200 (O™ s

[n]q e q(nz() iz 7,(2k)
We know the inequality

[1-24], <[1+24],. (2.4)

Therefore by using (2.4) we have
1-2 ® 2%
Lr o (2% %) 2 (z(X))* + n ]T I (] i](x)) > (q[r;]q(rz(;)))
qz”f(X)[l 2u], i((}[n]qr(X))2k+l
[n]q e q(nz(x) iz 7,(2k+1)

v, AT 0
Similarly on the other hand we have " ’ ’
r(x)

na (75 X) < (7(X))° +[1+2ﬂ]q[ i,

Which completes the proof.
Lemma 2.2. Let the operators Ly ,(.;.) be given by (2.1). Then for each continuously

differentiable function 7(X) on R™, we have
1. L;’q(r—r(x);x) =0,

2 L ((r—7(x)% %) <[1+24] ()

" [n],

3. Main results

We obtain the Korovkin's type approximation properties for our operators defined by (2.1). The
Korovkin theory is an important area of study in approximation theory; see [3]. Briefly speaking,
the Korovkin theorem says that if a sequence of linear positive operators approximates uniformly
the test functions 1,t and t2, thenit approximates all continuous functions defined on a bounded
interval. Thistheorem was extended to unbounded intervals and aweighted K orovkin type theorem
in a subspace of continuous functions on the real axis R was proved in [8, 9]. Also it was shown
that these test functions can bereplaced by 1,7, 72 under certain additional conditionson 7 (see
Theorem 3.3). We show here that the operator defined in (2.1) satisfies the required conditions for
the weighted K orovkin type theorem.

Let C;(R") betheset of al bounded and continuousfunctionson R™ =[0,0) , whichislinear
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On modified Dunkl generalization of Szész-operatorsvia—q calculus 39

normed space with

Il T llc, =sup| F(x) .

x>0

Let

HZ:{fZXEO,OO),L)Z IS convergent as X — oo}.
1+7(x)

Theorem 3.1. Let L;’q (-;.) be the operators defined by (2.1). Then for any function
f eC§[O,oo)mH, =2,

limLy o (%)= f(x)
nN—oo
N 1 1
is uniformly on each compact subset of [0, ) , where X € [E ,b), b> rs
Proof. The proof is based on Lemma 2.1 and well known Korovkin's theorem regarding the
convergence of a sequence of linear and positive operators, so it is enough to prove the conditions

limL, (') =7(x)!, =012, {asn— o}
uniformly on [0,1].

1
Clearly —— —> 0 (n — o) wehave
n
q

limL; o (7:%) = 7(X), limLy4 (7% %) = 7(X)*.
nN—o nN—oo
Which complete the proof.
We recall the weighted spaces of the functionson R™, which are defined as follows:

PR)={f{f(OEM, p(x)}
Q,(R")={f:f eP (R)NC[0,x)}

Q;(R+):{f:fer(R+) and |imLX;:k(k is a constant)},

X—>00 p(X
where p(X) =1+17(X)’ is a weight function and M | is a constant depending only on f .
f(x
Notethat Q (R™) isanormed space with thenorm || f ||p=wpx>o%.
0 (x

Lemma 3.2. ([7]) Thelinear positive operators L, n>1 actfrom Q (R") —P,(R") if
and only if

I L, (2 %) l|< Kep(x),
where @(X) =1+ x*, xeR"* and K isapositive constant.
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Theorem 3.3. ([7]) Let {Ln}nZl be a sequence of positive linear operators acting from
Q,(R") = P,(R") and satisfying the condition
limllL,(p")-p"1l,=0, v=0,12.

n—oo

Then for any function f € Q; (R"),wehave

lim[l L, (f;x)—f],=0.

n—o0
Theorem 3.4. Let L;’q (.;.) be the operators defined by (2.1). Then for each function

k +

f €eQJ(R") we have

lim |l Lo (%)= T1],=0.
Proof. From Lemma 2.1 and Theorem 3.3 for v = 0, thefirst condition is fulfilled. Therefore

lim|l L; 4 (3, %) -1]] ,= 0.

n—oo
Similarly From Lemma 2.1 and Theorem 3.3 for v =1,2 we have that

| Ln,q (T, X) _ZZ-(X) | < 1 su 1 .
x<[0,0) 1+7(x) 2[n], xelo=) 1+ 7(X)
1
2[n],

which imply that
lim|| Lo (z:x) —7(x) ]|, = 0.
nN—oo

Lo (7% =700 | _ [[1+24, —1] sup =)

x€[0,00) 1+ T(X)2 B [n] q x€[0,00) 1+ T(X)2
1 1
e I[1+2u], -1] Sup ———
4[n)? I[+24, lxqog) 1+ 7(x)?

which imply that
limll Lo (%) =70)* 11, =0
—0©

This complete the proof.

4. Rate of Convergence

Here we calculate the rate of convergence of operators (2.1) by means of modulus of continuity and
Lipschitz type maximal functions.

Let f € Cg[0,0], the space of all bounded and continuous functions on [0,0), 7(X) isa
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1
continuously differentiable function on R* and XZZ—, nNeN . Then for 6 >0, the
n

modulus of continuity of f denoted by @(f,d) givesthe maximum oscillation of f inany

interval of length not exceeding ¢ > 0 and it isgiven by
o(f,0)= sup |f(t)-f(X)] teO,00). (4.2)

e ()7 (x)|<5
Itisknownthat lims_o.@(f,0) =0 for f € C;[0,00) andforany & >0 onehas

| f(t)- f(x) (Mﬂjw(f ,5). 4.2)

Theorem 4.1. Let L;yq(.; .) be the operators defined by (2.1). Then for f € C;[0,0) we
have

1L (£330 - < 20(f:6, .00 )
where C,[0,00) isthe space of uniformly continuous bounded functionson R*,  @(f,d) is
the modulus of continuity of the function f € C;[0,0) definedin (4.1) and

0,

n r(x)

[1+24], [T(;() 4.3)

Proof. We proveit by using (4.1), (4.2) and Cauchy-Schwarz inequality we can easily get
1L (f0) - f | {1+ (L, () - ()% x )2 }a)( f:5)

if wechoose 6 =3,

Remark 4.2. For the operators Dn]q(.;.) defined by (1.20) we may write that, for every

f € C5[0,0), x>0 and neN
1D, (F;%)— f(x) < 20(;4,,) (4.4)

o =D (E=%)%5%) < /[1+2ﬂ]q[] (45)

Now we claim that the error estimation in Theorem 4.1 is a generalization of (4.4) provided
f €Cy[0,00) and 7(X) is a continuously differentiable function on R™ . Indeed, for

and by applying the result (2.2) of Lemma 2.2 complete the proof.

where by [16] we have

7(X) =X and X € R™, under these conditions, wenoticethat | X —t [<| 7(t) — 7(X) |, for every
X,t e R". Itisguarantees that
L;,q ((T(t) - z-(X))z; X) = Dn,q ((t - X)z; X)' (46)
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Now we give the rate of convergence of the operators Ly . (f;X) definedin (2.1) in terms of the
elements of the usual Lipschitz class Lip,, (v) .

Let f €C,[0,00), M >0 and O0<v <1.In[1], the Lipschitz type maximal function space
on EcR, isdefinedas

V;a,E ={f :sup(1+7(x))“ ?a(x) <M m :and y € E} (4.7)

where f is bounded and continuous function on R, , M is a positive constant, 0< o <1
and 7(X) continuously differentiable functionon R™ .
In[17], B.Lenze introduced a Lipschitz type maximal function f asfollows:
f(t)— f(x
£ oty= > HO=T] (48)
=5 | 7(x) — 7 (1) |
Theorem 4.3. Let L;’q(.; .) be the operator defined in (2.1).Then for each
f e Lip, (v), (M >0, 0<v<1) satisfying (4.7) and (4.8) we have

1L (F0— F KM, )2

where &, _(,, isgivenin Theorem 4.1.

n,z(x

Proof. We proveit by using (4.7), (4.8) and Holder inequality.
| Lo (F5) = L (F (D) - T3 |
<L (f®)-fEx)
<ML, (7@ -7 )
Therefore
[Lq(fix)—f |

o3 L O g

<M
e ([Nyz()iz 7.,k ~ 1-0°

L (RN
e AN EL 7,00
x[([nlqr(x»kj? g7

| ——7(x)[" dt
Y1 (K) 1-q
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2-v

2 ([n],7(x))"
<M
[e,,q([n] f(X))kZ Vua(K) ]

© n X k . 2y9k+k %
Z([ ] 7’-( )) 1 - T(X) |2 dt
eyq([n] T(X))k Y a(K) 1—q
=M (L, (z(t) - ()% X)e.
Which complete the proof.
Let C;[0,00) denote the space of al bounded and continuous functionson R* =[0,00) and
CeR)={geCs(R"):9,9 €Cy(R")}, (49)
with the norm
190z, MOl oy 10 Ml o+, @20
aso
Holle g™ pIgI (411)

Theorem 4.4. Let Ly (.;.) be the operator defined in (2.1). Then for any g € CZ(RY) we
have

ILD (0% -g '”(*) gl

isgivenin Theorem 4.1.

C (R+

where 5w(x)

Proof. Let g € C;(R+) , then by using the generalized mean value theorem in the Taylor series
expansion we have

9(z(t) = g+ (z(t) ~7(x)).9 +

By applying linearity property on L

(z(t) - 7(x))°

> 9 W), ve(zt),7(x).

ng we have

L50(9.0-9 =9 L (- 200ix)}+ L (e - 0007 ),

which imply that

M9 N e
w2

|Lhq(9:X) -9 < [[1+ 2u]

From (10) wehave 1 g lleyion <l 9 1l g0,
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Il gll
. CoY 7(X) CZ(RY)
L () —g < ([1+ 2u], [, ] >

This completes the proof from 2.2 of Lemma 2.2.
The Peetre’'s K -functional is defined by

_ " . 2
K(f&—;g)ﬂnf ey #0118 Nl oW ) @12
where
W?=lgeC,y(R):0.,9" €Co(R")} (4.13
1
There exits a positive congtant C >0 such that K,(f,9) <Caw,(f,02), 6 >0, where the
second order modulus of continuity is given by

wz(f,55)= sup sup| f(x+2h)—2f(x+h)+ f(x)]. (4.14)
EXERJr
0<h<s2

Theorem 45 Let L (.;.) be the operator defined in (2.1) and C4[0,0) be the space of all

bounded and continuous functions on R . Then for any continuously differentiable function
7(x) on R" and f € C;(R™) we have

|La(Fi)— 1]

[5 5
<2Miw,| f; ”2“) +mln[ ”’“’Ju Il [

where M is a positive constant, 0, ()

is given in Theorem 4.3 and @,(f;0) isthe second

order modulus of continuity of the function f defined in (4.14).
Proof. We prove this by using the Theorem 4.4

Lo (55— F L (F =0 [+ L (9 ) -9 |+] f -9

0,
7(X)
<201 =gl o+ 10l
From (4.10) clearly wehave || ¢ ||CB[OOO) <l g ||C 200"
Therefore,
_ < _ n ,7(X)
Lo (F1) f|{nfgncw ngm%+]

where &, () isgivenin Theorem 4.1.
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By taking infimumover all g € C5(R™) and by using (4.12), we get

5nrx
|L5q(f5x)—f |§2K{f; ,4( ) j

Now for an absolute constant Q >0 in[7] we usetherelation

K, (1;5) < Qw,(f5+/5) + min(L,5) || |}

This complete the proof.

Conclusion.

Purpose of this paper is to introduce a modification of sequence of Dunkl generalization of
exponential functions via ( -calculus which is based on a continuously differentiable function 7
on [0,00) by 7(0) =0 and inf &+ 7'(X) > 1. Here we have defined a Dunkl generalization
of these modified operators. This type of modifications enables to obtain the degree of
approximation by continuously differentiable function 7 on the interval R™ rather than the
classical Dunkl Szész operatorsvia ( -caculus[16]. We obtained some approximation results via

well known Korovkin'stype theorem. We have also calculated the rate of convergence of operators
by means of modulus of continuity and Lipschitz type maximal functions.
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1. Introduction

The notion of Lorentzian concircular structure manifolds (briefly (LCS), -manifolds) with an
example was introduced by Shaikh [11], which generalize the notion of LP-Sasakian manifolds
introduced by Matsumoto [ 7] and also by Mihai and Rosca[8]. Then Shaikh and Baishya[12], [13]
investigated the applications of (LCS), -manifolds to the genera theory of relativity and

cosmology. The (LCS), -manifolds are also studied by Atceken et al. [1], [2] and many authors.

In 1982 Hamilton [5] introduced the notion of Ricci flow to find a canonical metric on a smooth
manifold. It has become a powerful tool for the study of Riemannian manifolds, especially for those
manifolds with positive curvature. Perelman [9], [10] used Ricci flow and its surgery to prove
Poincare conjecture. The Ricci flow isan evolution equation for metrics on a Riemannian manifold
defined as follows.

0
a 9jj ®= —2R;

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A soliton to the Ricci flow is
called Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling. A
Ricci soliton (g,V,4) on aRiemannian manifold (M, g) isageneralization of Einstein metric
such that [6]

L,g+2S+24g9 =0,

where s istheRicci tensorand L, istheLiederivativeaongthevector field v . on M and 2
isareal number. The Ricci soliton is said to be shrinking, steady and expanding as 2 is negative,
zero and positive respectively.

As a generalization of Ricci solitons, the notion of 5 -Ricci solitons was introduced by Cho and
Kimura [3]. This notion has also been studied in [3] for Hopf hypersurfaces in complex space
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forms. An ;-Ricci solitonisatuple (g,v.4, ), where v isavector fidldon M . 4 and » are
constantsand g isaRiemannian metric satisfying the equation

L,g+25+219+2un®n =0, (1.3)
where s is the Ricci tensor associated to Riemannian metric ¢ . In particular, if z=0 then
(g,V,4) isRicci soliton.
Theinterest in studying Ricci solitons has considerably increased and has been carried out in many

contexts; on Kenmotsu manifolds, & -Sasakian manifolds, trans-Sasakian manifolds, Lorentzian
a -Sasakian manifolds, (LCS),-manifolds, f -Kenmotsu manifolds respectively. Recently A. M.

Blaga studied the 5 -Ricci soliton on Lorentzian para-Sasakian manifolds and on para-Kenmotsu
manifolds. In this paper we use semi-symmetry, pseudo-symmetry conditions on pseudo-projective
curvature tensor i.e, R-P =L,Q(g,P), R-P =0, P-R=L,Q(g,R) and P-R=0 to
study »,-Ricci solitonsof (LCS), manifolds.

2. Preliminaries

An n -dimensional Lorentzian manifold M is a smooth connected paracompact Hausdarff
manifold with a Lorentzian metric g , thatis, M admits a smooth symmetric tensor field g of
type (0,20 suchthat for eachpoint peM, thetensor g,:T,M xT,M — R isanon-degenerate inner

product of signature (—,+,........ ,+) where T,M denotesthetangent vector spaceof M at p
and R is the real number space. A non-zero vector veT,m is said to be timelike (resp.,
non-spacelike, null, spacelike) if it satisfies g,(v.v)<0 (resp., <0, =0, >0). The category to

which agiven vector fallsis called its casual character.
Definition 1. InaLorentzian manifold (M,g) avector field P defined by

9(X,P)=A(X).
forany X € y(M) issaidto bea concircular vector field if
(Vx A(Y) = A 9(X,Y) +a(X)A(Y)},

where « isanon-zero scalar and @ isaclosed 1-form.
Let M" beaLorentzian manifold admitting a unit timelike concircular vector field ¢ and called
it as the characteristic vector field of the manifold. Then we have

g(?! Gg) = _1’ (2-1)
since & isaunit concircular vector field, it follows that there exits anon-zero 1-form 5, such that
for

9(X,&) =n(X), (22)
the equation for the following form holds.
(V) (Y) = {g(X,Y)+n(X)n(Y)}, a=#0, (23)
that is
(Vx&) =al X +n(X)c], (24)

for all vector fields x,y where v denotesthe operator of covariant differentiation with respect to
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the Lorentzian metric g and ¢ isanon-zero scalar function satisfies
(Vya) = Xa =da(X) = pn(X), (25)
0 being acertain scalar function givenby p = —(&a) . If we put

1
X =;Vx§. (2.6)
then from (2.3) and (2.6) we have
X = X +n(X)E, 2.7

for which it follows that ¢ is a symmetric (1,1) tensor and called the structure tensor of the
manifold. Thus the Lorentzian manifold m" together with the unit timelike concircular vector
field &, its associated 1-form 5 and (1,1) tensor field ¢ is said to be a Lorentzian concircular
structure manifold (briefly (Lcs), manifold) [11]. Especialy if wetake « =1, then we can obtain
the LP-Sasakian structure of Matsumoto [7]. Ina (LCS), -manifold, the following relations hold.

(&) =-1, ¢& =0, g(¢X,aY) = g(X,Y) +n(X)n(Y), (2.8)
#*X = X +n(X)é, (2.9)
(Vi) (Y) ={g(X,Y)S+2n(X)n(Y)S+n(Y) X}, (2.10)
R(X,Y)& = (a — p){n(Y)X —n(X)Y}, (2.11)
R(&,Y)Z = (a® - p){9(Y,Z)é-n(Z)Y}, (212)
n(R(X,Y)Z) = (& - p){9(Y,Z)n(X) - 9(X, Z)n(Y)}. (2.13)

3. n-Riccisoliton on (LCS), -manifolds.

Let M(g.¢,7,9) be an n-dimensional Lorentzian concicular structure manifold and let
(M,(g.&,4,1)) bea (LCS), 7 -Ricci soliton. Then therelation (1.1) implies

(L:9)(X,Y)+25(X,Y)+249(X,Y) +2un(X)n(Y) =0,
i.e.,
25(X,Y) ==(L9)(X,Y) = 249(X,Y) = 2un(X)n(Y). CAY)
Here L.g denotes the Lie derivative of Riemannian metric g along a vector field &, by the
definition of Lie derivative we have

(L:9)(X,Y) =g(V&,Y)+9(Vy &, X). (32
Using (2.4) in (3.2) we obtain
(L:9)(X,Y) =2a{g(X,Y)+7n(X)n(Y)}. (3.3)
Using (3.1) and (3.3) we can write
S(X,Y) = (—a—=A)9(X,Y) +(=a—w)n(X)n(Y). (34)

Thus we state the following theorem:
Theorem 1. An (LCS), n-Ricci soliton (M,(g.£,4,)) isan p-Einstein manifold.

In particular if #=0 in(3.4), thenit reducesto
S(X,Y)=(—a-2)9(X,Y)—an(X)n(Y). (35)
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Thus we state the following:
Corollary 1. An (LCS),-Ricci soliton (M,(g,£,4)) isan j;-Einstein manifold.

4. n -Ricci soliton on pseudo-projective pseudo-symmetric (LCS), -manifolds.
An (LCS), manifold M is sad to be pseudo-symmetric if M satisfies the condition

R-P= LﬁQ(g,ﬁ) . Where L is some smooth function on M and P is the
pseudo-projective curvature tensor and it is given by

P(X,Y)Z =aR(X,Y)Z +b[S(Y,Z)X —S(X,Z)Y]—r:[ril+bj[g(Y,Z)X —g(X,2)Y]. (4D
Using (2.13), (3.5) in (4.1) we get

n(P(X.Y)Z) :[a(aZ—p)m(—a—ﬂ)—;(rilmﬂ[gw,zmoo—g(x,Z)nmL (4.2)

P(£,Y)Z = {a(az —p)+b(-a —1)—%(%_1+ bﬂ[g(Y,Z)é—n(Z)Y]. 4.3)

Let us consider

(R-P)U.V,Z;8,Y)=L:(Q(9,P)VU.V,Z;S.Y)) (4.4)
L.H.Sof (4.4) takesthe form
(R-P)U,V,Z;EY)=R(EY)PUV)Z-P(R(EYUNV)Z-PU,REYNV)Z-PUVIREY)Z  (45)
Taking inner product of (4.5) with & and by virtue of (2.12) and (4.2) we can obtain
g((R ’ E)(U !szvévY)!é) = _(a2 —P)P(U !VvaY)

+(a2—p){a(a2—p)+b(—a—z)—;[rjlmﬂ[g(v,U)g(v,Z)—gw,V)g(u,zn (46)
R.H.S of (4.4) takesthe form
Q(g,PYU,V,Z:EXY)=(EAY)PWUV)Z —P((EAY)U,V)Z.
—PWU,(EAYNV)Z-PU V)R(EAY)Z 4.7)
Taking inner product of (4.7) with & and by using the definition of endomorphismi.e.,
(X AY)Z=g(Y,Z)X —g(X,Z)Y and (4.2) we can obtain

9(Q(g.P)U.V,Z;£,Y),&)=-P(U.V,Z,Y)
{a(aZ_p)+b(—a—A)—%[ﬁmﬂ[gw,mg(\/,zyg(Y,V)g(u,Z)]. (4.8)

Using equations (4.6) and (4.8) in (4.4) we can get
Either Ly = (a®—p) or

_PU ,v,z,Y){a(az—p)+b(—a—,1)—;(n:+ bﬂ[g(Y,U)g(V,Z)—g(Y V)g(U,z)=0. (49)
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Let {e,€,,....,6,} bean orthonormal basis of the tangent space at each point of the manifold.
Putting U =Y =g, in (4.9) and taking summation over i, (1<i<n), using equation (4.1) we
get

_ a(Ol2 —p)+b(~a-4) 4.10
S(v,Z){ 2 b(1-1) }g(V,Z). (4.10)

Thus we can state the following:

Theorem 2. A pseudo-projective pseudo-symmetric (LCS), » -Ricci soliton (M,(g,&,4,4)) is an
Einstein manifold provided Lg #(a?-p) .

Similarly we obtain the same result for pseudo-projective semi-symmetric (LCS),, -manifold and

we can state the following.
Corollary 2. An pseudo-projectively semi-symmetric (LCS), » -Ricci soliton (M,(g,&,4,4)) isan

Einstein manifold.
In particular, if =0 in(3.4) comparing with (4.10) and contacting we get thevalueof A as
1= an(a’® - p) . a(@a+b(n-1))

(4.11)
n(b-1) n(b-1)

Thus, we can state the following
Corollary 3. A Ricci soliton in pseudo-projective pseudo-symmetric manifoldsis given by (4.11)

5. p-Ricci soliton on (Lcs),-manifold admitting the pseudo-symmetric condition

P-R=L.Q(g,R).
Let us consider
(P(E.Y)-R)UV)Z = L[((E AY)-R)U,V)Z] (5.1)
which implies
5(§,Y)R(U V)Z - R(5(§,Y)U V)Z-R(U, 5(§,Y)V)Z -RU ,V)I5(§,Y)Z

=L[(EAY)RUV)Z-R((EAYIUV)Z-RU,(EAYIV)Z-RU,V)EAY)Z] (5.2
Taking inner product of (5.2) with & and using (4.3) and (2.13) we can get

Either |, =[a(oc2— p)+b(—a—z)—%[ni_1 +bﬂ or

RU.V,Z,Y)=(a®-p)g(Y,U)g(V,Z)-g(Y.V)g(U,Z)]. (5.3)
Let {ee,,....en} bean orthonormal basis of the tangent space at each point of the manifold. Putting
U=Y=¢ in(5.3) and taking summation over i, (1<i<n), we get

S(V,Z)=(a”~p)(n-1)g(V,2). (5.4)
Thus we can state the following:

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 4, 2014, pp. 47-52



52 K.R. VIDYAVATHI AND C.S. BAGEWADI

Theorem 3. An (LCS), 5 -Ricci soliton (M,(g,&,4,4) admitting semi-symmetric condition

n-1
Corollary 4. An (LCS), 7 -Ricci soliton (M,(g,&,4,1) admitting semi-symmetric condition
P-R=0 isan Einstein manifold.

P-R= L;Q(g,R) is an Einstein manifold provided Lg #[a(az—p)ﬁ—b(—a—ﬂ)—%(i bﬂ
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1 Introduction

It iswell known that in differential geometry the curvature of a Riemannian manifold plays abasic
role and the sectional curvatures of a manifold determine the curvature tensor R completely. A
Riemannian manifold with constant sectional curvature C is called a real-space-form and its

curvaturetensor R satisfies the condition

R(X,Y)Z =c{g(Y,Z)X —g(X,Z)Y}. (1.1)
Models for these spaces are the Euclidean spaces (C = 0), the spheres (C > 0) and the hyperbolic
spaces (€ <0).
In contact metric geometry, a Sasakian manifold with constant ¢ -sectional curvature is called

Sasakian-space-form and the curvature tensor of such a manifold is given by

R(X,Y)Z :C%f{g(Y,Z)x —9(X,2)Y} (12)

+CT_1{g(X,¢Z)¢Y ~ 9(Y ., 4Z)¢X +29(X, 4Y )42}

+E20ON@Y -1V n@)X

+9(X,Z)n(Y)e —g(Y,Z)n(X)s}.

These spaces can also be modeled dependingon ¢ >-3, ¢=-3 or C<-3.
As a generaization of Sasakian-space-form, in [1] Alegre, Blair and Carriazo introduced and
studied the notion of generalized Sasakian-space-form with the existence of such notions by several

interesting examples. An almost contact metric manifold M(¢,§,77, g) is caled generalized
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Sasakian-space-form if there exist three functions f,, f,, f, on M such that [1]
R(X,Y)Z = f{g(Y,Z)X —g(X,Z)Y} (13)
+ 1{9(X, gZ)pY —g(Y.4Z) X +29(X., #Y )iz}
+ f{n(X)n(2)Y —n(¥)n(Z2)X
+9(X, 2)n(Y)e - 9(¥,Z)n(X)c}

for al vector fields X , Y, Z on M, where R is the curvature tensor of M and such a
manifold of dimension (2n+1), N>1 (the condition N>1 is assumed throughout the

—2n+l
paper), is denoted by M " (f,, f,, f3) . The generalized Sasakian-space-forms have been
studied by several authors such as Alegre and Carriazo ([2], [3], [4]), Belkhelfa, Deszcz and
Verstraglen [8], Carriazo [10], C I rnu[12], Ghefari, Solamy and Shahid [13], Gherib, Gorine and

Belkhelfa [14], Hui and Sarkar [16], Kim [18], Narain, Yadav and Dwivedi [20], Olteanu ([21],
[22]), Shukla and Chaubey [23], Y adav, Suthar and Srivastava [25] and many others.

As a generdlization of invariant and anti-invariant submanifolds, Bejancu [7] introduced and
studied the notion of contact CR-submanifolds. The geometry of contact CR-submanifolds arerich
and interesting subject. Several authors studied contact CR-submanifolds of different classes of
almost contact metric manifolds such as[5], [6], [17], [19] and many others.

Motivated by the above studies the present paper deals with the study of contact CR-submanifolds
of generalized Sasakian-space-forms. The paper is organized as follows. Section 2 is concerned
with preliminaries. Section 3 is devoted to the study of contact CR-submanifolds of generalized
Sasakian-space-forms. We obtain many integrability conditions of the distributions of contact
CR-submanifolds of generalized Sasakian-space-forms. We aso studied the contact CR-products
in a generalized Sasakian-space-form and obtained a necessary and sufficient condition for a
contact CR-submanifold of a generalized Sasakian-space-form to be a contact CR-product.

2. Preliminaries
In an almost contact manifold, we have [9]

#(X) ==X +7(X)é. 95 =0, @Y
1) =1,9(X,8) = n(X)n(#X) =0, 22)
9. 4Y) = 90OGY) =0 (XIn(Y), 23)
9K, Y) =-g(X,4Y), 24)
(V) =9(VaY), 29

where V isaconnectionon M .

—2n+1
In ageneralized Sasakian-space-form M " (f, f,, f;), wehavefrom (1.3) that
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(Vx@)(Y) = (f,— £)[9(X,Y)E-n(Y)X], (26)
V& =—(f,— f,)gX 2.7)

S(X,Y) = (2nf,+3f, - £)g(X,Y)~{3f,+(2n-D) f}n(X)n(Y), (28

r =2n(2n+1) f, + 6nf, — 4nf,, 2.9)

R(X,Y)E = (f,= f){n(Y)X —n(X)Y} (2.10)
R(EX)Y = (f,= ) 9(X,Y)E-n(Y)X}, (211)
n(R(X,Y)Z) = (f,— £.09(Y,Z)n(X) - g(X,Z)n(¥V)}, (2.12)
S(X,&) = 2n(f, - f)n(X). (213)

—2n+1
Let M beasubmanifold of a generalied Sasakian-space-form M " (f, f,, f;). Alsolet V

and V~ be the induced connections on the tangent bundie TM  and the normal bundle T M
of M respectively. Then the Gauss Waingarten formul ae are given by

VxY =V, Y +h(X,Y) (2.14)

VxV =—A X +ViV (2.15)
foral X,Y eT'(TM) and V e(T*M), where h and A, are second fundamental form
and the shape operator (corresponding to the normal vector field V ) respectively for the

—2n+l
immersion of M into M~ (f,, f,, f;). The second fundamental form h and the shape
operator A, arerelated by [26]

g(h(X,Y).V)=g(A X.Y). (2.16)

for any submanifold M of aRiemannian metric on Mznﬂ( f,, f,, f;), theequation of Gaussis
given by
R(X,Y)Z =R(X,Y)Z+ Ay )Y = Ayy.y X (2.17)

+(Vxh)(Y,Z) - (Vyh)(X,Z2)

for any X,Y,ZeI'(TM) where R and R denotes the Riemannian curvature tensors of
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M and M respectively. The covariant derivative Vh of h isdefined by

(Vxh)(Y,Z) =Vxh(Y,Z)-h(V,Y,Z)-h(V,Z.Y), (2.18)
and the covariant derivative V x A, isdefined by
(VxA)Y :VX(AVY)—AWY—&VXY (2.19)

for any X,Y,ZeT(TM) and V eI'(T*M) . The norma part (ﬁ(X,Y)Z)l of
ﬁ(X ,Y)Z from (2.17) isgiven by

(R(X,Y)Z)* = (Vxh)(Y,Z)=(Vvh)(X,Z), (2.20)
which is known as Codazzi equation. If in particular ﬁ(X,Y)Z)l =0 then M issaid to be

curvature invariant submanifold of M .
The Ricci equation is given by

g(R(X.YIV,U) = g(R*(X.Y)V,U)+g([A,. A ]X.Y) (221)
forany X,Y e'(TM) and U,V eI'(T"M),where R* denotesthe Riemannian curvature

tensor of the normal vector bundle T*M andif R* =0 thenthe normal connectionof M is
caledflat [17].
Using (1.3) in (2.21) we get

g(R(X,Y)V,U) = f,[g(X,aV)g(4Y,U)—g(Y,4V)g(#X,U) (222)
+29(X,¢Y)g(gV,U)]
+9([A A IX,Y)
forany X,Y eT'(TM) and U,V eI'(T*M).

3. Contact CR-submanifolds in generalized Sasakian-space-forms
Let M be an isometrically immersed submanifold of a generalized Sasakian-space-form

—2n+1

M (f,f,, f;). Thenforany X e T(TM) wehave

oX = EX + FX, (3.2)
where EX and FX are the tangential and normal components of @X respectively. Also for
any V eI'(T*M) we canwrite

&N =BV +CV, (3.2
where BV and CV are the tangential and normal components of ¢V respectively. Also B
is an endomorphism of the normal bundle T* of TM and C is an endomorphism of the

subbundle of the normal bundle T*M .
The covariant derivatives of the tensor fieldsof E and F are defined by

(V,E)Y =V, EY -E(V,Y), (3.3)
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and
(Vi F)Y =V FY —=F(V,Y) (3.4)
foral X,Y e '(TM). The canonical structure E and F on a submanifold M are said to

beparallel if VE =0 and VF =0 respectively. Also the covariant derivativesof B and C
are defined by

(V,B)V =V, BV -B(V,V) (35)
and
(V,CIV =V CV —C(VyV). (3.6)
Also for any X,YeI'(TM) , we have ¢(EX,Y)=-g(X,EY) and for any
U,V el(T*M),wehave g(U,CV)=-g(CU,V).Thisshowsthat E and C are skew
symmetric tensor fields.
Moreover forany X e '(TM) and V e (T M), therelation between F and B isgiven
by
g(FX,V)=g(X,BV) (37)
Definition 3.1. [6] Let M be an isometrically immersed submanifold of a generalized

—2n+l
Sasakian-space-form M (f,, f,, f;). Then M s called a contact CR-submanifold of

—2n+1

M (f,, f,, f5) if there is a differentiable distribution D:p—>D, T (M) on M
satisfying the following conditions

(i) £eD

(if) Disinvariant withrespectto ¢ i.e. #(D,) =D, foreach peM ,and
(ili) The orthogona complementary distribution D*:p — D,cT,(M) saisfies
¢(D§) cT,SM foreach pe M

Now from (2.1)
¢ =EE+FE=0,
which is eugivalent to
ES=F&=0 (3.8)
Apply ¢ to(3.1) and using (2.1) and (3.2) we get
E?+BF =—l+n7n®¢ and EF +CF =0. (3.9
Similarly apply ¢ to(3.2) and using (2.1) and (3.1) we get
C?+FB=-1and EB+BC =0. (3.10)

In view of (1.3) it follows from (2.17) that the curvature tensor R of an immersed submanifold
M of ageneralized Sasakian-space-form Mzm( f,, f,, f5) is
R(X,Y)Z = f[g(Y,Z)X -g(X,Z)Y] (3.12)
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+ f,[9(X,gZ)EY —g(Y,#Z)EX +29(X,4Y)EZ]
+ f[n(X)n(Z2)Y =n(Y)n(Z)X +9(X,Z)n(Y)S
=g(Y,Z)n(X)E] + Ay H X = Ay 2yY -
From (1.3) and (2.20) we have
(Vxh)(Y,Z)—(Vvh)(X,Z) = £,[g(X,4Z)FY
—g(Y,gZ)FX +29(X,¢Y)FZ]. (312)

Theorem 3.1. There is no any curvature invariant proper contact CR-submanifold of a generalized
—2n+1

Sasakian-space-form M (f, f,, f;) suchthat f, #0.
Proof. Let M be a curvature invariant contact CR-submanifold of a generalized
Sasakian-space-form MZM( f,, f,, f3) with f, = 0. Then from (3.12) we get
g(X,EZ)FY —g(Y,EZ)FX +2g(X,EY)FZ =0, (3.13)
forany X,Y,Z eI'(TM).Putting Z = X in(3.13) we get
39(EY,X)FX =0,

which implies that either F =0 or E =0, that is either M is invariant or anti-invariant
submanifold.

Theorem 3.2. Let M be a contact CR-submanifold of a generalized Sasakian-space-form
—2n+1

M (f, f,, f;) withflatnormal connectionandlet f, #0.1f EA, = A E for any vector

V e’(T*M) then either M is an anti-invariant submanifold or generic submanifold of

—2n+1

M (f,f,, ).
Proof. Let the normal connection of M be flat then from (2.22) we obtain
g([A, A TX,Y) = f,[g(X,¢V)g(gY,U)

—9(Y.dV)g(gX,U)+29(X,4Y)g(4V,U)] (3.14)
forany X,Y e[(TM) and U,V eI'(T*M). Taking X = EY and V =CU in (3.14)
we get

g(A\J’ACUEY _ACUAJEY’Y)
=2f,[g(E?,Y)g(CU,CU)]. (3.15)

If EA, =A,E then we have f,tr(E*)g(CU,CU)=0 ie, tr(E?)g(CU,CU)=0
as f,#0, ether which implies that E =0 that means M is anti-invariant submanifold or

CV =0 that means M isgeneric submanifold.

Theorem 3.3 Let M be a contact CR-submanifold of a generalized Sasakian-space-form
—2n+1

M (f,, f,, f;). Then the invariant distribution D is integrable if and only if the second
fundamental form of M satisfies h(X,@Y) =h(¢X,Y) forany X,Y e I'(D).
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Proof. For any vector fields X,Y in D we havefrom (2.6) and (2.14) that
AX,Y]= ¢(YXY _YYX)

= ¢(VxY —Vyx)

:§X¢Y —(§x¢)Y —€Y¢X +(€Y¢)X

= VY =VygX +h(X,Y)=h(Y,X) +(f, = f)[n(Y) X —n(X)Y].(3.16)
Comparing the normal components of (3.16) we get

FIX,Y]=h(X,gY)=h(Y,gX). (3.17)

Thus D isintegrableif and only if h(X,@Y) =h(Y,¢X) forany X,Y eI'(D).

Definition 3.2. If the invariant distribution D and anti-invariant distribution D" are totally
geodesicin M then M is called contact CR-product.
Now we characterize contact CR-products in generdlized Sasakian-space-form

VG AEAY
Theorem 3.4. Let M be a contact CR-submanifold of a generalized Sasakian-space-form
MZM( f,, f,, f;). Then M is a contact CR-product if and only if the shape operator A of
M satisfies the condition

Ap X +(f,— f)n(X)pW =0 (3.18)
foral X e'(D) and W eI'(D").
Proof. Let us take M be a contact CR-submanifold of a generalized Sasakian-space-form

—2n+1

M~ (f,f, f;). Then for dl X,Y e'(D) and Z,W eI'(D") we have from (2.3),
(2.6), (2.14) and (2.16) we get
g(AwdX,Y) = g(h(#X,Y),sW)

= g(VvgX W)

= g((Vy@) X +4Vv X, W)

=g((f,— f){9(X,Y)7 —n(X)Y}, W) +g(V, X, W)

=—(f,— f)n(X)g(Y,dW)+g(V, X,W)

g(AWPX +(f = £)n(X)dW,Y) = g(V, X,W) (3.19)
and

9(Aw#X.Z) = g(h(#X,Z), ) = g(V2gX , W)
=g((V24)X +4V2 XPN)
= g((f,— £,){9(X,Z)E-n(X)Z}, W) +g(Vz X W)
=—(f,— f)n(X)9(Z, M) - g(V, W, X),
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i.e,
g(Au X +(f = f3)n(X)PW, Z) = -g(V,W, X). (3:20)
Thus from (3.19) and (3.20) we get V, X €I'(D) and V,W eT'(D") if and only if the

relation (3.18) holds.

Theorem 3.5. Let M be a contact CR-submanifold of a generalized Sasakian-space-form
—2n+1
M™ (f,, f,, f,). Then the anti-invariant distribution D" is always integrable.

Proof. For any vector fields Z , W belongsto D" we havefrom (2.16) that
f(V,W)=-Bh(Z,W)-A,Z,
i.e,
f[ZW]=A,W-A,Z (3.21)
On the other hand, we obtain

9(AwZ,U)=g(h(U,Z),4W)

==0(¢(VuZ),W)
=—g(VugZ —(Vugp)Z,W)
= g(A W, U)+(f - )9, Z)n(W)-n(2)g(U,W)]
= g(AzW,U) foranyU e (TM).
Thisimplies that
A W = A,,Z, for any vector fields Z,W eI'(D"). (3.22)

In view of (3.22) we have from (3.21) that f[Z,W]=0, that is [Z,W]eT(D") which
completes the proof.
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