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Hybrid and Projective Synchronization of Multi-Scale
Cancer-Invasion Model

Ayub Khan & Arti Tyagi

Department of Mathematics, Jamia Millialslamia, New Delhi-110 025, India, akhan12@jmi.ac.in
Department of Mathematics, Jamia Millialslamia, New Delhi-110 025, India, artityagi28@gmail.com

Abstract: The Active Control method has been employed to discuss the hybrid and projective synchronization between the
two identical chaotic systems of the Tumor growth models. During the investigations analytic and computational techniques
have been used. For different values of growth parameters hybrid synchronization and projective synchronization between
the considered systems have been achieved. Most significantly the analytic and computational results are in an excellent
agreement. This manuscript provides significant mathematical description to devise the sophisticated experimental
mechanism for the treatment of tumor growth.

1. Introduction

Cancer is now becoming the leading cause of death around the world but our overall knowledge of
its causes, methods of prevention and cureis still in itsinfancy. One strongest tool that has shown
its potential in our better understanding of such a complicated biological systems is mathematical
modeling [1],[2]-[5]. Mathematical models provide redlistic and quantitative representations of
important biological phenomena and biological interpretations of the results can give insight to
make realistic predictions of the state of disease under different conditions [6]. The idea of using
mathematical modelsfor cancer wasintroduced in 1955 by Thomlinson and Gray(1955). After that,
many mathematical models for tumor growth have been developed and the application of these
models has been increased recently [7]-[11]. What makes mathematical models of tumor growth
interesting is that they can be simple but indeed still indicate the complicated interactions
involved[12]. The tumor growth dynamics and the anti tumor immune response dynamics in vivo
are very complex[13] and not well understood mainly because in most of states, the measurements
areimpossible in vivo. Models are not only able to explain many phenomena observed in vivo,but
they could also provide a good insight about the phenomena that are unobservable in vivo. Mgjor
causes of the complexity in the tumor systems are the diversity of levels of the tumor system(gene,
molecular, cellular, tissue, organ, body and population), different time scales of each level,
self-organization of the system, multitude of signaling path ways and tumor-immune and
tumor-environment interactions [14]-[17]. This complexity can lead to an emergence of different
types of attractors(fixed point, limit cycle,and even strange attractors)[18]-[20]. In fact,one can also
experimentally demonstrate the existence of these limit cycles and strange attractors as a result of
the complex dynamics of the tumor system [21], [22]. These strange behaviors of tumors can be
addressed based on the inherent properties of chaos such as sensitive dependence on initia
conditions[23]. Sensitive dependence on initial conditions makes the tumor growth patterns case
specific, i.e.evolution of cancer for any patient is different from another patient, due to the different
initial conditions for any individual. While thisis a challenging issue for the oncologists, thisis a
very interesting topic in the field of tumor modeling. For these reasons, chaos theory could allow a
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better understanding of this complex system [24]-[27].

Due to chaotic nature of tumor growth model, this could explain the unreliability of treatment and
prediction of tumor evolution. More importantly, chaos in tumor growth model,could be used to
adjust strategies for fighting cancer. Treatment could include some form of chaos synchronization,
chaos control and/or anti-control. Since the seminal work of Pecora and Carroll [28], on the
synchronization of chaotic systems. Synchronization phenomenon has formed a new body of
research activities which is at the fore front of recent application topics in nonlinear dynamics
[29]-[32]. As aresult, enormous progress has been made in understanding various types [33]-[48]
and methods [28], [49]-[61] of synchronization.

Complete synchronization is signalized by the equality of state variables evolving in time, while
anti-synchronization is signalized by the disappearance of the sum of relevant variables evolving in
time. In hybrid synchronization of chaotic systems ,one part of the system is synchronized and the
other part is anti-synchronized so that the complete synchronization and anti-synchronization
coexist in the system. Projective synchronization is interesting because of its proportionality
between the synchronized dynamical states.Mainieri and Rehacek werethefirst to study it and they
declared that two identical systems could be synchronized up to a scaling factor A , which is a
constant transformation between the synchronized variables of the driven and response systems
[34]-[38]. Obviously, complete synchronization and anti phase synchronization are special cases of
projective synchronizationwith 4 =1 and A = —1 respectively.

In this paper we achieve hybrid and projective synchronization of the trajectory of coupled tumor
growth and decay modelswith different initial conditionsviaActive control method. This study can
be used as a powerful tool for adjusting strategies for fighting cancer. By synchronization,
reliability of treatment and prediction of tumor evolution become possible. This paper may be a
base to devise the appropriable devices for the treatment of cancer growth. Also, numerical
experiments are performed to show such synchronization on tumor growth and decay models.

2. Model description

A multiscale diffusion cancer-invasion model (MDCM) was presented in [62]-[70], which
considers cellular and micro environmental factors simultaneously and interactively. The model
was classified as hybrid, since a continuum deterministic model (based on a system of
reaction-diffusion chemotaxis equations) controls the chemical and extracellular matrix (ECM)
kinetics and a discrete cellular automata-like model (based on a biased random-walk model)
controls the cell migration and interaction. The interactions of the tumor cdls,
matrix-metalloproteinases (MMs), matrix-degradative enzymes (MDES) and oxygen are described
by the four coupled rate PDEs:

on

e D,V?n— vV (nVf), (2.1)
a =—-dmf, (2.2)
ot

%—T =D, V’m+ zn—m, (2.3)

% =D,V + ff —m—-ac. (2.9
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Hybrid and Projective Synchronization of Multi-Scale Cancer-Invasion Model 3

where N denotes the tumor cell density, f isthe MM-concentration, M corresponds to the

MDE-concentration and C denotes the oxygen concentration. The four variables, n,m, f ¢

aredl functions of the 3-dimensional spatial variable x and timet. All equations represent diffusion
except(2.2), which shows only temporal evolution of the MM-concentration coupled to the

MDE-concentration. D, is the tumor cell coefficient , D,, is the MDE coefficient and D, >0

is the oxygen diffusion coefficient,while y,u,A,0,a,y, B are positive constants. The other
terms respectively denote:

2V.(n.Vf) — hapototaxis;

uN — poduction of MDE by tumor cell;
Am —decay of MDE;

omf — degradation of MM by MDE;

ac — natural decay of oxygen;

/N — oxygenuptake and;

pf —production of oxygenby MM.

Because of its hybrid nature (cells are treated as discrete entities and micro environmental
parameters are treated as continuous concentrations), the 4-dimensional (4D) model (2.1)-(2.4) can
be directly linked to experimental measurements of those cellular and micro environmental
parameters recognized by cancer biologists are treated as very important in cancer invasion .
Furthermore, the fundamental unit of the model is the cell, and the complex collective behavior of
the tumor emerges as a consequence of interactions between factors influencing the life cycle and
movement of individua cells [62], [64], [65], [68], [69], [70]. In order to use realistic parameter
values, the system of rate equations (2.1-2.4) was non-dimensionalised. In order to use redistic
parameter values, wefirst of all non-dimensionalised the equations (2.1) - (2.4) in the standard way.
We rescale distance with an appropriate length scale L (e.g. the maximum invasion distance of the
cancer cells at this early stage of invasion, approximately 1 cm), time with 7 (e.g. the average

time taken for mitosis to occur, approximately 8-24 h), tumour cell density with n,, ECM density
with f,, MDE concentration with M, and oxygen concentration with C, (where n,, f,,m,

and C, are appropriate reference variables). Therefore, setting

-~ n z-_f - m_._¢c -_Xx~_t
n=—,f=—m=—,c=—X=—,t =—

No f, m, Co L T
in equations (2.1)- (2.4). After dropping the tildes notational convenience, the resulting 4D scaled
system of rate PDES[64] is given by

% =d V’n- pv(nVf), (2.5)

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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a = —pmf (2.6)
a T |
am _ d_Vm+xn—om, 2.7)
ot
%:dcvzcw/f —on—ge. (2.8)

The values of non-dimensional parameters were given ag[64]:
d =0.0005, p=0.01, =50, d_=0.0005, k=1, c=0, d_ =05, v=05,

w=057, ¢=0.025.

2.1. A chaotic multi-scale cancer-invasion model. [73] From the non-dimensional
spatio-temporal AC model (2.5)- (2.8), discretization was formed by neglecting all the spatial

derivatives which means VN, Vf,Vm, Vc all becomes zero and our coupled partial differential

equations (2.5)- (2.8) reduced into ordinary coupled differential equations as all the four variable

, on_dn om _dm of _df oc _dc
n,m,f and ¢ now depends only on time, thus E: = ,—=—and —=—

dt’ ot dt ‘ot dt ot dt

i—|ence our model resulting into 4D temporal dynamical system which can de described as :

n=0, (2.9
f =—pmf, (2.10)
M = kN —om, (2.11)

When simulated, the temporal system (2.9)-(2.12) with the set of parameters,

0 =0.01,7=50,xk =1,0 =0,v =0.5,0 = 0.57,¢ = 0.025. (2.13)
exhibits a virtually linear temporal behavior with amost no coupling between the four
concentrations that have very different quantitative values (all phase plots between the four
concentrations, are virtually one-dimensiona). To see if a modified version of the system (2.9)-

(2.12) could lead to a chaotic description of tumor growth, four new parameters @, f, 7 ,0
were introduced. The resulting model is:

n=0, (2.14)

f =an(m- 1), (2.15)

m= pgxn+ f(y—c)—m, (2.16)
¢ = vim — wn — d¢c. (2.17)

The introduction of the parameters (¢, 5,7, & ) was motivated by the fact that tumor cell shape

represents a visual manifestation of an underlying balance of forces and chemical reactions [71].
Specifically, the parameters represent the following quantities:

a = tumor cell volume(proliferation/non — proliferation fraction),
S = glucose level,

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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y = number of tumor cells
o = diffusion fromthe surface(saturation level).

For computations, the parameters were set to ¢ =0.06 , f=0.05, y =26.5, 6 =40.
Small variation of these chosen values would not affect the qualitative behavior of the new
tempora model (2.14)- (2.17). Simulations of (2.14)- (2.17), using the initial conditions(
n(0) =.5, f (0) =1.5,m(0) = c(0) =.5) and the same non-dimensional parameters as before
givenin (2.13), show chaotic behavior in the form of Lorenz-like strange attractorsin the 3D (f - m
- ¢) subspace of the full 4D (n - f - m - ¢) phase-space.(Figure 1;(A),(B),(C) & (D))

V4

Figure 1: (a) Phase Portrait of atumor growth system in the m-f-c space ; and projections on (b) the
f-m plane, (c) the f-c plane and (d) the c-m plane.

3. Hybrid Synchronization of Two Identical Tumor Growth Model Using Active

Control Method.
For a system of two identical chaotic systems to be in hybrid synchronization, we consider

master/drive system with subscript 1 in Tumor growth model and slave/response system with

subscript 2 in Tumor growth model with different initial conditions. Then drive and response
systems are defined as follows:

n, =0,
f'1 =an(m,—f,),
my = Brng + fi(y —c)—my,
¢, =vfm, —on, — d¢c,. (31

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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and
n, = 0+U,(t),
1E2 =an(m,— f,)+U,(t),
m, = Brn, + f,(y —¢,) —m, +U,(t),
¢, =vf,m, —an, —ogc, +U ,(t). (32)
where U, (t),U, (t),U,(t) and U,(t) are the control functions in the response system. We

aim to design the control functions U, (t) ,i=1,2,3 and 4.

To observe hybrid synchronization between the master system (3.1) and the slave system (3.2) , we
firstly note that the co-existence of synchronization and anti- synchronization in a system can occur
in more than one way. The master system (3.1) contains four state variables namely
n,, f,,m, & ¢, Thus, various combinations of variables can be made to get synchronized whilethe
remaining variables will then be anti-synchronized. Using the theory of combinations, it follows
that there are C (4, 0)+C (4, 1)+C (4, 2)+C (4, 3)+C (4, 4) = 16 possible ways of combining the
variables. Out of them, C(4,4) and C(4,0) correspond to the cases of complete synchronization and
anti-synchronization respectively. Hence, there are 14 different hybrid synchronization phenomena

possible.
L et us discuss two of the above mentioned cases:

Case—1. First, we completely synchronize the state variable N, and M, ; and the state variables

i.e fl and C; areanti-synchronized. The hybrid synchronization errors are defined as ;

ee=n,—-n, E,=f,+f, eg=m,—-m and E,=c,+c,. (3.3)
using (3.1), (3.2) and (3.3) the corresponding error dynamicsis given by :
& =U, (1),

Ez = 0”7(93 - Ez) +2amm, +U2(t):
&, = fre, +)E, —e; - 2)f, + e, — f,c, +U, (1),
E, =vi,m, +fm — (e, +2n,) - 5¢E, +U ,(t). (3.4)

Figure 2: Phase Portrait of master (red,thick) and slave system (blue,dotted) in m-f-c space.

This error system (3.4) to be controlled must be alinear system. To eliminate the non-linear terms

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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in (3.4), we redefine the control functions as::
U, (1) =V, (1),
U,(t) = —2amm, +V,(t),
U,(t) = 24, — f.c, + .0, +V,(1),

U,(t) =-f,m, —vfm, +2mn, +V,(t). (3.5)
Subsequently, the new error system can be expressed as:
& =Vi(t),

Ez =an(e;—E,)+V,(1),
&, = fre, + B, —e; +V,(t),
E, = —we, — 5¢E, +V,(t). (3.6)
The error system (3.6) to be controlled is alinear system with controlled inputs V,; (i = 1, 2, 3, 4)
as functions of error states €, ; (i=1,3) and E;; (i=2,4). If lim__ g (t)=0 , (i= 1 ,3) and
lim__E;(t)=0 , (i= 2, 4) ,synchronization and anti-synchronization between master and slave
system isrealized respectively . There are many possible choices for the controls V, (t),V, (t),V,(t)

and V,(t) to obtain the required conditions. We choose

VO] e
V,(t E
»(1) |5 37)
Vs(t) = Al e,
V,(t) E,
Here A is a square matrix of order four to be determined. Choosi ng,
[ -1 0 0 0 ]
0 oan-1 —an 0
(3.8)

A=|-px -y 0 0
1) 0 0 odp-1

Using (3.7)and (3.8),we get the values for V,(t),V,(t),V,(t) and V,(t) then (3.4) can be
rewritten as:

&(t) e (t)

E®| |EO

&(t) (=B &)

E®)| |E®

where,

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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-1 0 0 O
0 -1 0 O (3.9)
B={0 0 -1 O
0 0 0 -1
Hence the error system becomes
¢=-¢, E,=-E, é=-e and E,=-E, (3.10)
Now, we consider the Lyapunov function as;
V(e)=12e'e=12(e+E;+e+E}) (3.11)

which is a positive definite functionon R *  Differentiati ng (3.11) along the trgjectories of (3.10),
we get

V(e)=-e’-E?—el—E’? (3.12)
which is a negative definite function on R*. Thus, by Lyapunov stability theory [72], the error
dynamics (3.4) is globaly exponentialy stable. Hence, it is proved that
lim (t)=0, i=1 and 3 and lim_ E(t)=0, i=2 and 4 and hence,

state variable N, and M, are synchronized while the state variables f, and C, are

anti-synchronized. Thus, hybrid synchronization is achieved between the master and slave systems
(3.1) and (3.2).

3.1. Simulation results. Numerical results are presented to demonstrate the effectiveness of the
proposed technique. We select the parameters of tumor growth and decay systemas « = 0.06

£ =005, y=26.5, 6 =40. So that tumor growth and decay exhibits a chaotic behavior.
The initidl values of the master and dave systems are ( N,(0), f,(0), m,(0),c,(0) ) =
(.:51.5,.5,5) and (N,(0), f,(0),m,(0),c,(0)) = (1,-1.5,1.5,2)respectively, while the
initial states of the error system (3.10) are (&,(0), E,(0),e,(0),E,(0)) = ( .5,0,1,2.5) with

these initial values, the phase portrait of master and slave systems together in mfc plane display
hybrid synchronization in Figure 2. The time waveform diagram of master and save states

variables areillustrated Figure 3. It is shown that the states N, and N, display asynchronization

t—)ooei

phenomenon, f, and f, shows anti synchronization behaviour, M, and M, aso
synchronized in complete way and C;, and C, display anti synchronization behaviour. The
dynamics of synchronization and anti-synchronization error functions for the drive and response
systemsversestime"t" isshown in (Figure 4) by trajectories €, (t), E, (t),e,(t) and E,(t).we
can see that the synchronization error will converge to zero at t = 6. Thus, desired chaos

synchronization is achieved between two identical tumor growth and decay systems with different
initial conditions.

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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— nl

E1%

© "
Figure 3: The time waveform diagram of the two identical tumor growth and decay systems with
different initial conditions by using active control method in hybrid synchronization cases : (a)

Time seriessignals N, (red,thick) and N, (blue,dotted) ; (b) Time series signals fl(red,thi ck) and
f2 (blue,dotted); (c) Time series signals M, (red,thick) and M, (blue,dotted) and (d) Time series
signals C (red,thick) and C, (blue,dotted).

=
==

-1L

Figure 4. The synchronization error functions €(t), E,(t), e,(t) & E,(t) of four state
variabletendsto O at t=6.
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Case -2. Now consider the case where the combination is reversed i.e we anti synchronize the
state variables N, and M, and completely synchronize the state variables f, and C, . The
hybrid synchronization errors are defined as ;

E,=n,+n, e =f,—f, E;=m,+m and e,=c,—cC,. (3.13)
using (3.1), (3.2) and (3.13), the corresponding error dynamicsis given by :
E, =U,(0),

e, = an(E;—e,)—2anm, +U,(t),
Es = ﬂkEl +7e, - E3 + 27fl - flcl - fzcz +U3(t)’
g, =vi,m, —vfm, —w(E, —2n)) - oge, +U ,(1). (3.14)

Figure 5: Phase Portrait of master system (red,thick) and slave system (blue,dotted) in m-f-c space.
Following the earlier line of arguments, we redefine the control functions as follows:
U, (t) =i (D),

U, (t) = 2anm, +V,(t),
Us(t) = =24, + fic, + f.0, +V;(1),

U,(t) =-vf,m, +vfm, —2mn, +V,(t). (3.15)
Thus, the linear error system can be written as:
E, =V,(0),

&, =an(E;-e,) +V,(1),
E, = BxE, + 18, — E; +V,(1),
é, =—wk, —oge, +V,(t). (3.16)

Thisis again equivaent to the linear error dynamics as given by (3.6).Again with the same choice
of matrices A and B asgiven in (3.8) and (3.9) respectively ,the error system becomes

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18



Hybrid and Projective Synchronization of Multi-Scale Cancer-Invasion Model 11

E,=-E, é=-e, E,=—E, and ¢,=-¢, (3.17)
Now we consider the Lyapunov function as;
V(e)=12e"e=1U2(E>+e> +E. +€) (3.18)

which is a positive definite functionon R *  Differentiati ng (3.18) along the trgjectories of (3.17),
we get

V(e)=-E2-e2-EZ-¢’ (3.19)
which is a negative definite function on R*. Thus, by Lyapunov stability theory [72], the error
dynamics (??) is globally exponentialy stable. Hence, it is proved that
lim__E(@)=0, i=1 and 3 and lim t)=0, i=2 and 4 and sate

varibles N, and M, are anti-synchronized while the remaining state variables f, and C, are

completely synchronized. Thus, hybrid synchronization is achieved between the master system
(3.1) and slave system (3.2).

3.2. Simulation results. Numerical results are presented to demonstrate the effectiveness of the
proposed technique. We select the parameters of tumor growth systems as « =0.06

S =005, y=26.5, § =40 sothat tumor growth systems exhibits a chaotic behavior. The
initial values of the master and slave systems are (N, (0), f,(0),m,(0),c,(0)) = ( .5,1.5,.5,.5)
and (Nn,(0), f,(0),m,(0),c,(0)) = (1,-1.5,1.5,2) respectively, while the initia states of the
error system (3.17) are ( E;(0),e,(0), E;(0),e,(0)) = (1.5,-3,2,1.5) with these initial values

the phase portrait of master and slave systemstogether in mfc plane display hybrid synchronization
(Figure 5). The time waveform diagram of master and dave states variables are illustrated in

(Figure 6). It is shown that the states N, and N, display anti synchronization phenomenon, f1

t~>ooei

and f2 shows complete synchronization behaviour, M, and M, also synchronized in anti way

and C;, and C, display complete synchronization behaviour. The dynamics of synchronization
error functions for the drive and response systems verses time "t" is shown in Figure 7 by
trajectories E,(t),e,(t), E5(t) and e,(t) . Thesefigures display that synchronization error will

convergeto zero at t =8 and we achieve desired hybrid projective synchronization between two
identical tumor growth and decay systems with different initial conditions.

TN

@ (b)
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(C) -aop (d) ' 0 n 0 W 0
Figure 6: The time waveform diagram of the two identical tumor growth system with different
initial condition by using active control method in hybrid synchronization cases) : (a) Time series

signals N, (red,thick) and N, (blue,dotted) ; (b) Time series signals fl (red,thick) and f2
(blue,dotted); (c) Time series signals M, (red,thick) and M, (blue,dotted) and (d) Time series
signals C (red,thick) and C, (blue,dotted).

= E1
]

0.4} \ = E3

LR

(3

01F

-01fF

021

Figure 7: The synchronization error functions E,(t), €,(t), E,(t) & €,(t) of four state

variabletendsto O at t=8.

4, Projective Synchronization Between Two Identical Tumor Growth Model.

To observe the projective synchronization between master and slave systems given in (3.1)and
(3.2)respectively. Lets us define the projective synchronization error as:

e,=n,—-An, e, =f,-Af, e,=m,—Am and e,=c,—Ac. (41
where A isaconstant parameter. Now, the error dynamicsis given as :-
€=U, (1),
e, =an(e;—e,)+U,(t),
€, = fre, + 8, —e; + Afic, — f,¢, +U,(1),
e, =vf,m, —Avfm, —we, —d¢ge, +U ,(t). (4.2)

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18
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Figure 8: Phase Portrait of master system (red,thick) and slave system (blue,dotted) in m-f-c space.
This error system (4.2) to be controlled must be alinear system with control functions. Thus, let us
redefine the control functions so that the termsin (4.2) which cannot be expressed aslinear termsin

e,'s areeliminated.
U, (1) =V, (1),
U,(t) =V, (1),
U,(t) = —Afc, + f,c, +Vy(t),
U, (t) = —vE,m, + 2 m, +V, (¢). (4.3)
The new error systemis expressed as.
e, = V(1)
e, =an(e;—e,)+V,(t),
€; = fre + 78, —e;+V(t),
3, =~k — O, +V, (1) (4.4)

Again, (4.4) is the identical system as given in (3.6). Hence, following the same steps, the error
system becomes

g, =-e, 6=—e, €é=-e and ¢€,=-e,. (4.5)
Now we consider the Lyapunov function as;
V(e)=1/2e"e =1/2(e? +€5 +e’ +e..) (4.6)

which isapositive definite function on R*. Differentiati ng (4.6) along thetrgectories of (4.5), we
get

V(e)=-e —e>—eZ—e’, (4.7)
which is a negative definite function on R?. Thus, by Lyapunov stability theory [72], the error
dynamics (??) isglobally exponentialy stable. Hence, lim,__e,(t)=0, 1=1,23 and 4.

This ascertains the projective synchronization between the master system (3.1) and slave system
(3.2).
4.1. Simulation results. Numerical results are presented to demonstrate the effectiveness of the
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proposed technique. We select the parameters of tumor growth systemas « = 0.06, £ =0.05,
y =26.5, 6§ =40 for these values tumor growth model exhibits a chaotic behavior. The initial
values of the master and slave systems are (N,(0), f,(0),m,(0),c,(0)) = (.5,1.5,.5,.5) and

(n,(0), f,(0),m,(0),c,(0)) = (1,-1.5,1.5,2) respectively. On choosing parameter A =2
for projective synchronization, the initiadl states of the error system (4.5) becomes
(¢,(0),e,(0),e,(0),e,(0) )=(0,-4.5,.5,1). With these initial values the phase portraits of
master and slave systems together in mfc plane display projective synchronization in Figure 8. The
time waveform diagram of master and slave systems statesvariables areillustrated in Figure 9. It is

observed that the states of daves system converges two timesthe values of the states of master. The
dynamics of synchronization error functions for the drive and response systems verses time "t" is

shown (Figure 10) by trajectories €(t),e,(t),e5(t) and e,(t) . We can see that the

synchronization error will converge to zero at t =10 and two identical tumor growth chaotic
systems are indeed achieving projective synchronization.

Also,it is easy to see that complete and anti synchronization are the specia cases of projective
synchronization with parameter 4 =1 and A = —1 respectively.

R it T ----

oo} -- =2l

0.8

07

o6k

( d) 10 0 El 40

Figure 9: The time waveform diagram of the two identical tumor growth systems with different
initial conditions by using active control method in projective synchronization with 4 =2 : (a)

Time seriessignals N, (red,thick) and N, (blue,dotted) ; (b) Time series signals fl(red,thi ck) and
f2 (blue,dotted); (c) Time series signals M, (red,thick) and M, (blue,dotted) and (d) Time series
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signals C; (red,thick) and C, (blue,dotted).

I
o
%]

0.06 = g3
24
0.02
L t
8 10
-0.02r
-4+

Figure 10: The synchronization error functions € (t), €,(t), e,(t) & e,(t) of four state
variabletendsto O at t=10.

5. Conclusion

In this manuscript, we presented two kind of synchronization i.e hybrid synchronization and
projective synchronization between two Tumor growth models evolving from different initial
conditions using the Active Control Technique which isbased on Lyapunov Stability Theory. The
effectiveness and feasibility of results are validated in numerical simulations which are performed
by using Mathematica software. Remarkably, our analytic and computational results are in an
excellent agreement. It is a significant mathematical description to devise the sophisticated
experimental mechanism for the treatment of tumor growth.
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1. Introduction
A self-mapping T defined on a bounded, closed and convex subset K of a Banach space X is
said to be nonexpansive if (forall X,y € K)

1T =Ty [I<ll x =y
It is well known that sequence of Picard iteration [1] defined as (for any X, € K)

_ n
X, =1"X neN (1)
need not be convergent in respect of a nonexpansive mapping. E.g., the sequence of iterates
Xy, = IX, forthe mapping T :[-1,1]—[—1,1] definedby TX=—X does not converges to
0 which is indeed the fixed point of T . In an attempt to construct a convergent sequence of
iterates in respect of a nonexpansive mapping, Mann [2] defined an iteration method as: (for any

X, € K)

Xpy = (1=a )X, +a,TX,, neN (12)

where «, € (0,1).
With a view to have a better rate of convergence, Ishikawa [3] introduced a new iteration procedure
as follows: (for X, € K)

Y, =(l-a)X, +a,TX,,X,,, =(1=8)X, +5.Ty,, neN

where «,,, S, €(0,1).
Iterative techniques for approximating fixed points of nonexpansive single-valued mappings have

(1.3)
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been investigated by various authors (see; e.g., [4, 5, 6]) using the Mann iteration scheme or the
Ishikawa iteration scheme. By now, there exists an extensive literature on the iterative fixed points
for various classes of mappings. For an upto date account of literature on this theme, we refer the
readers to Berinde [7].

Let X be a Banach space and K be a nonempty subset of X . Let CB(K) be the family of
nonempty closed bounded subsets of K while KC(K) be the family of nonempty compact

convex subsets of K. A subset K of X is called proximinal if for each X € X , there exists
an element K € K such that

d(x,k)=dist(x,K)=inf{|| x—y | y € K}.
It is well known that every closed convex subset of a uniformly convex Banach space is proximinal.
We shall denote by PB(K), the family of nonempty bounded proximinal subsets of K. The
Hausdorff metric H on CB(K) is defined as

H (A, B)=max{supd(x,B),supd(y,A)} for A, B e CB(K).
XxeA yeB

A multivalued mapping T : K — CB(K) is said to be nonexpansive if

HTX),T(y)) || x-y]|, for all x,y e K.
We use the notation F(T) for the set of fixed points of the mapping T while F(t,T) denotes

the set of common fixed points of t and T ,i.e. apoint X is said to be a common fixed point of

tand T if X=txeTX

In 2010, Sokhuma and Kaewkhao [8] introduced a modified Ishikawa iterative process involving a
pair of single valued and multivalued nonexpansive mappings in Banach spaces and proved strong
convergence theorems. This scheme has been studied by several authors [8, 9, 10, 11] with respect
to different class of mappings in Banach Spaces. The purpose of this paper is to study modified
Ishikawa iterative method for a hybrid pair of nonexpansive mappings in CAT(0) spaces.

2. Some iteration procedure for multi-valued mapping
In 2005, Sastry and Babu [12] defined Ishikawa iteration scheme for multivalued mappings. Let

T :K — PB(K) a multivalued mapping and fix p € F(T). Then the sequence of Ishikawa
iteration is defined as follows:
Choose X, € K,

y,=p.2,+(=6)X,, B,<[0,1], n=0,
where Z, ET(Xn) such that || Z,—p ||= d(p,T(Xn)) and

X, =a,z,+(1-a)X,, a, €[0,1],n>0,
where Z, €T(Y,) suchthat ||z, —p||=d(p,T(Y,)).

Sastry and Babu [12] proved that Ishikawa iteration scheme for a multivalued nonexpansive
mapping T converges to a fixed point of T under certain conditions. In 2007, Panyanak [13]
extended the results of Sastry and Babu to uniformly convex Banach space for multivalued
nonexpansive mappings. Panyanak also modified the iteration scheme of Sastry and Babu and
imposed the question of convergence of this scheme. He introduced the following modified
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Ishikawa iteration method,
Choose X, € K, then

Yo =Bz, +(1=6)x,, B, elabl,0<a<b<1,n=0,
where Zz, € TX, is such that ||z, —u, ||=dist(u,,TX,), and U, € F(T) such that
[| x, —u, |[=dist(x,,F(T)), and
X,y =,z +(1-a,)X, «a,€[a,b],
where Z/ €T(Y,) such that ||z, —v, ||=dist(v,,Ty,), and Vv, € F(T) such that

” Yo —V, ”:dISt(yn’F(T))

In 2009, Song and Wang [14] pointed out the gap in the result of Panyanak [13]. They
solved/revised the gap and gave the partial answer to the question raised by Panyanak by using the
following iteration scheme.

Let a,, S, €[0,1] and y, €(0,0) suchthat limy, =0.Choose X, € K, then

Nn—o0
Xig = aan'] +(l_an)xn’

z,€TX, and z; €Ty,.
Simultaneously, Shahzad and Zegeye [15] extended the results of Sastry and Babu, Panyanak, and
Song and Wang to quasi nonexpansive multivalued mappings and also relaxed the end point

condition and compactness of the domain by using the following modified iteration scheme and
gave the affirmative answer to the Panyanak question in a more general setting.

Yo = £z, + (1= )%, B, €[0,1], n20,
Xn+1 =anzr’1 +(1_an)xn’ an 6[091]: n 207
where Z, € TX, and Zr'] eTy,.

Recently, Sokhuma and Kaewkhao [8] introduced the following modified Ishikawa iteration
scheme for a pair of single valued and multivalued mapping.

Let K be a nonempty closed and bounded convex subset of Banach space X ,let t: K — K
be a single valued nonexpansive mapping and let T :K — CB(K) be a multivalued

nonexpansive mapping. The sequence {Xn} of the modified Ishikawa iteration is defined by
Y, =pB.2,+(1=B)X,, X, =, ty, +(1-a,)X,, (1.4)
where X, €K, z, €TX, and 0<a<e,, f,<b<l1.

Furthermore, they proved the following strong convergence theorem:
Theorem 2.1. Let K be a nonempty compact convex subset of a uniformly convex Banach space
X ,andlet t: K > K and T : K — CB(K) be a single valued and a multivalued

nonexpansive mapping, respectively, and F(t,T) # < satisfying Tw = {w} for all

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7,2016, pp. 19-30



22 1ZHAR UDDIN AND MOHAMMAD IMDAD

we F(t,T).Let {X,} be the sequence of the modified Ishikawa iteration defined by (1) with

0<ac<a,,f,<b<I1.Then {X,} converges strongly to a common fixed pointof t and T .

3. The CAT(0) space setting
To make our presentation self contained, we collect relevant definitions and relevant results. In a

metric space (X,d), a geodesic path joining X € X and Y € X is a map ¢ from a closed
interval [0,r]C R to X such that ¢(0)=X,c(r)=1y and d(c(t),c(s))=|s—t]| for all
S,t €[0, r]. In particular, the mapping C is an isometry and d(X, Y) = . The image of C is
called a geodesic segment joining X and Y which is denoted by [X, Y] whenever such a
segment exists uniquely. For any X,y € X , we denote the point Ze€[X,Y] by
Z=(1-a)x®@ay ,  where 0<a<l if d(x,z)=ad(X,Y) and
d(z,y)=(1-a)d(X, Y). The space (X,d) is called a geodesic space if any two points of
X are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one
geodesic joining X and Y for each X,y € X . A subset K of X is called convex if K

contains every geodesic segment joining any two points in K .

A geodesic triangle A(Xl, X5, X3) in a geodesic metric space (X, d) is consisted of three
points of X (as the vertices of A) and a geodesic segment between each pair of points (as the
edges of A ). A comparison triangle for A(X;,X,,X;) in (X,d) is a triangle
A(X;, Xy, X3) i = A(X1, X2, X3) in the Buclidean plane R? such  that
dR2 (Xi, X)) =d(X, X;) for i, je{1,2,3}. A point X e [;1,§2] is said to be comparison

point for X €[X;,X,] if d(x,Xx)=d (;1,;) Comparison points on [;z,;3] and [;3,;1]
are defined in the same way.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles satisfy the following
comparison axiom namely: CAT(0) inequality

Let A be a geodesic triangle in X and let A be its comparison triangle in R”. Then A is
said to satisfy the CAT(0) inequality if for all X, Y € A and all comparison points X, Y € A,

d (X7 y) S dRZ (X7 y)
If X,Y, and Y, are points of CAT(0) space and Y,, is the midpoint of the segment [y, ¥,1,
then the CAT(0) inequality implies
1 1 1
d(x, yo)2 < Ed(x’ y1)2 +Ed(x, y2)2 _Zd Y yz)z-

The above inequality is known as (CN) inequality and was given by Bruhat and Tits [16]. A
geodesic space is a CAT(0) space if and only if it satisfies (CN) inequality.

Towards certain classes of examples, one may recall that every convex subset of Euclidean space
R" endowed with the induced metric is a CAT(0) space. Also, the class of Hilbert spaces are
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examples of CAT(0) space. Moreover, if any real normed space X is CAT(0) space, then it is a
pre-Hilbert space. Furthermore, if X, and X, are CAT(0) spaces, then so is X, x X, . For

further details on CAT(0) spaces, one can consult [16, 17, 18, 19].
Now, we collect some basic geometric properties which are instrumental throughout the

discussions. Let X be a complete CAT(0) space and {Xn} be a bounded sequence in X . For
Xe X, set:
r(x,{x,}) =limsupd(Xx,X,).

n—>c0
The asymptotic radius I'({X,}) is given by

F({x,}) = inf{r(x,,): xe X},
and the asymptotic center A({X,}) of {X,} is defined as:

A({X, 1) ={xe X1 (X, X,) = r({X,})}.
It is well known that in a CAT(0) space, A({X,}) consists of exactly one point (see Proposition 5

of [20]).

In 2008, Kirk and Panyanak [21] gave a concept of convergence in CAT(0) spaces which is
analogue of weak convergence in Banach spaces and restriction of Lim’s concept of convergence
[22] to CAT(0) spaces.

Definition 3.1. ([21]). A sequence {X,} in X issaidto A-convergeto X & X if X isthe
unique asymptotic center of U, for every subsequence {U,} of {X_}.In this case we write
A—1limp X, = X andreadas X isthe A-limitof {X,}.

Notice that for a given {X } < X which A -converges to X and for any Y€ X with
Yy # X (owing to uniqueness of asymptotic center), we have

limsup d(X,, X) <limsupd(X,, ).
nN—o0 n—oo
Thus every CAT(0) space satisfies the Opial property. Now, we collect some basic facts about
CAT(0) spaces which will be frequently used throughout the text.

Lemma3.1. ([21]). Every bounded sequence in a complete CAT(0) space admits a A
-convergent subsequence.

Lemma 3.2. ([23]). If K is closed convex subset of a complete CAT(0) space and if (X,) isa
bounded sequence in K, then the asymptotic center of {X} isin K.
Lemma3.3. ([24]).Let (X,d) bea CAT(0)space. For X,y € X and te[0,1], there
exists a unique Z €[X, Y] such that

d(x,z)=td(x,y) and d(y,z)=(1-t)d(x,Y).
Notice that we use the notation (1—t)X@1ty for the unique point Z of the above lemma.
Lemma 3.4. ([24]). For X,Y,Z€ X and t€[0,1] we have

d((1-t)xDty,z) < (1-t)d(x,z)+td(y, 2).
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Lemma3.5. ([24]). Let X bea CAT (0) space. Then
d(1-t)xDty,z)> <(1-t)d(x,2)” +td(y,z)* —t(1-t)d(x, y)’
forall X,¥,z€ X and te[0,1].

In 2008, Shahzad and Markin [25] proved the common fixed point theorem for a hybrid pair of
nonexpansive mappings.
Lemma 3.6. Let X be a complete bounded CAT(0)space and assume that 1: X — X and

T : X — 2% are nonexpansive mappings with T (X) a compact convex subset of X for each

X € X . If the mappings t and T commute then thereis Z € X suchthat Z=1t(z) €T (2).

The following lemma is a consequence of Lemma 2.9 of [26] which will be used to prove our main
results.

Lemma 3.7. Let X be a complete CAT (0) space and let X € X . Suppose {t,} is a
sequence in [D,C] for some b,Cc€(0,1) and {X,}, {Yy,} are sequences in X such that
limsupd(X,,X)<r , limsupd(y,,X)<r , and limd((1-t,)X, ©t,y,,X)=r for

n—co n—oo N—00

some I >0 . Then
limd(xn, yn) =0.

nN—oo

Lemma3.8. Let X beaCAT(0)space, andlet K be a nonempty closed convex subset of X
Then,

dist(y,Ty) <d(y,x)+dist(x,Tx)+ H(Tx,Ty),
where X,y € K and T isa multivalued mapping from K to CB(K).

Now, we present the iteration scheme of Sokhuma and Kaewkhao [8] in CAT(0) spaces setting
which is described as follows:

Let K be anonempty closed and bounded convex subset of a CAT(0) space X ,let t: K — K
be a single valued nonexpansive mapping and let T :K — CB(K) be a multivalued

nonexpansive mapping. The sequence { Xn} of the modified Ishikawa iteration is defined by

Yo =2, ©(1—a,)X,, X = Buty, ©(1-5,)X, (3.1
where X, €K, z, €TX, and 0<a<e,, f, <b<I.

The purpose of this paper is to study the convergence of iteration scheme (3.1) for nonexpansive
mapping in CAT(0) spaces which enable us to enlarge the class of spaces. Our results generalize
and extend the corresponding relevant results in Sokhuma and Kaewkhao [8].

4. Main Results
We first prove the following lemmas which play very important roles in this section.

Lemma 4.1. Let K be a nonempty closed convex subset of a CAT(0) space X . Let
t:K—>K and T:K —>CB(K) be a single-valued and a multivalued nonexpansive

mappings, respectively, and F(t,T)# & satisfying Tw={w} for all we F(t,T). Let
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{X,} be the sequence of the modified Ishikawa iteration defined by (3.1). Then, limd(X,,W)

n—o0

exists forall We F(1,T).
Proof. Let X, € K and we F(t,T), we have

d(X,,, W) = d((1-5,)x, @ S ty,, W)
< (A-g)d(x,,w)+ g.d(ty,,w)
< (I=B)d(X,, W)+ B, d(Y,, W)
= (1-g)dx,, W+ d({(1-a,)X, ®a,z,,W)
< (A-p)Hdx,, W)+ . (1-a,)d(X,,W)+a,S,d(z,,W)
= (1-)d(x,, W)+ g (1-a,)d(X,,w)+a, S, dist(z,,Tw)
< (A-p)dx,, W)+ . (1-a,)d(X,,W)+a,S,H(TX,,Tw)
< (A=-8)dx,, W)+ S, (1-a,)d(X,, W)+ e, B,d(X,, W)

d(x,,w)
which implies that {d(X,,W)} is a decreasing and bounded below sequence i.e. convergent

sequence. Thus, we conclude that the limit of {d (X, W)} exists.

Lemma 4.2. Let K be a nonempty compact convex subset of a CAT(0) space X . Let
t:K—>K and T:K —>CB(K) be a single-valued and a multivalued nonexpansive

mapping, respectively, and F(t,T)# < satisfying Tw = {W} forall we F(t,T).Let {X,}
be the sequence of the modified Ishikawa iteration defined by (3.1). If 0 <a <, <b <1 for
some a,beR, then [imd(ty,,x,)=0.

nN—oo

Proof. Let We F(t,T). From Lemma 4.1, limp_.d(X,,W) exists and we assume that
limn_x d (X, , W) = C. Consider,

d(ty,,w)=d(ty,,tw)<d(y,,w)

=d((1-a,)X, ®a,z,,W)

<(1-ea)d(x,,W)+a,d(z,,w)

=(1-a,)d(x,, W)+, dist(z,, Tw)

<(1-ea)d(x,,W)+a,H(Tx,,Tw)

<(1-e)d(x,, W)+ e, d(X,, W)

=d(X,,W).
Also,

limn—. sup d(ty,, w) < limsupd(y,,W) < limsupd(X,,W) =C 3)

n—oo n—
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Then, we have
c= limd(xnﬂaw) = limd((l_an)xn ®antynaw)- (4)

nN—o0

Owing to Lemma 3.7, we conclude from (3) and (4) that Jimd(ty,,X,)=0.

n—ow
Lemma 4.3. Let K be a nonempty closed convex subset of a CAT(0) space X . Let
t:K—>K and T:K —>CB(K) be a single-valued and a multivalued nonexpansive

mapping, respectively, and F(t,T)# satisfying Tw={w} for all we F(t,T). Let
{X,} be the sequence of the modified Ishikawa iteration defined by (3.1). If 0<a<e,,
S, <b <1 forsome a,beR, then, limd(X,,z,)=0.

n—oo

Proof. Let We F(t,T). As earlier, we put limp_ d(X,, W) =C.For N >0, we have
d(Xn+19W):d((l_an)Xn®ﬂntynaw)
S(l_ﬁn)d(xn’w)@ﬂnd(tyn’w)
<(1-4)d(X,,w)+ £.d(y,,W)

and therefore,
d(xn+19W)_d(Xn9W) < ﬂn(d(ynﬁw) —d(Xn,W)),
d(xn+1’W) -d (Xn’W)

b

Thus, taking limit N —> 00, we obtain

+d(X,, W) <d(y,,w)

hmlnf{d (Xn+1’ W) — d (Xn9 W) + d (Xnow)} < llmlnf d (yn’W)
thereby implying

C < liminf d(y,,w)
From (3), we have that limp_,.,Supd(Y,, W) < C, which further implies that

C = limnoe A (Y5 W) = limno A (1 - &)X, © 2,2, W) (6)
Recalling that

d(z,,w)=dist(z,,Tw)

<H(TX,, Tw)

<d(x,,w)
Hence, we have

limn SUp d(Z,, W) < limg-,., SUp d (X, W) =C (7

By using Lemma 3.7 and Equations (6) and (7), we get that ]imp_,., d (Xn , Zn) =0.
Lemma 4.4. Let K be a nonempty closed convex subset of a CAT(0) space X . Let
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t:K—>K and T:K—>CB(K) be a single-valued and a multivalued generalized
nonexpansive mapping, respectively, and F({,T)# O satisfying Tw={w} for all
we F(t,T). Let {X,} be the sequence of the modified Ishikawa iteration defined by (3.1). If
0<a<ea,, B,<b<1 forsome a,beR, then, limy.d(tX,,X,)=0.
Proof. Consider,

d(tx,,X,) <d(tx,,ty,)+d(ty,,X,)

<d(x,,y,)+d(ty,,X,)

=d(x,,(1-,)x, @ a,z,)+d(ty,,X,)

<a,d(x,,z,)+d(ty,,X,).
Then, we have

limd (tx,, X,) <lim,d(X,,Z,) + lim d(ty,,, X,)

n—oo n—oo nN—oo

Hence, by Lemma 4.2 and 4.3, limy_,. d(tX,,X,)=0.

Theorem 4.5. Let K be a nonempty compact convex subset of a CAT(0) space X . Let
t:K—> K and T:K — CB(K) be asingle-valued and a multivalued nonexpansive

mappings, respectively, and F(t,T)# & satisfying Tw = {w} forall we F(t,T). Let
{X,} be the sequence of the modified Ishikawa iteration defined by (3.1). If 0 <a<¢,,,
B, <b <1, then X, — Y for some subsequence {Xni} of {X,} implies ye F(t,T).

Proof. Let us suppose that limi_.,d (X, ,¥) =0 .From Lemma 4.4, we have
1

limd (txni 2 )=0

I—00
Now, we have

d (%, .ty) <d (%, .t ) +d(tx, .ty)
<d(x, .5, ) +d(x, ,Y).

On taking ]im both side we get,

i—o

hmd(xni 9ty) =0.

I—>0
Hence by uniqueness of the limit of a sequence we obtain Y =1y, thatis, Yy € F(t). Owing to
Lemma 3.8 and by Lemma 4.4, we get that

dist(y,Ty) <d(y, Xo )+ dist(xni ,Txni )+H (Txni ,TY)
<d(y,x, ) +d(x,,z,)+d(x,,y) —>0,as 0.2cmi— oo,

This implies that Y € F(T). Therefore, ¥y € F(t,T) as desired.
Theorem 4.6. Let K be a nonempty compact convex subset of a CAT(0) space X . Let
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t:K—>K and T:K —>CB(K) be a single-valued and a multivalued nonexpansive
mappings, respectively, and F(t,T) = satisfying Tw={w} for all we F(t,T). Let
{X,} be the sequence of the modified Ishikawa iteration defined by (3.1) with 0 <a<¢,,
B, < b<1.Then X, converges strongly to a common fixed pointof t and T .

Proof. Due to the fact that K is compact and the sequence { Xn} is contained in K, there exists

a subsequence {X, } of {X } suchthat {X, } converges strongly to some point y € K, that
I |
is, limised(X,, ,Y)=0.Owing to Theorem 4.5, we have Y € F(t,T), and by Lemma 4.1, we
1

obtain  that limn—eo d ( Xp y) exists. So, it must be the case that
limn_d (X5 Y) = limise d (Xni ,Y) . Therefore, {X,} converges strongly to a common fixed

point Y of t and T .

Theorem 4.7. Let K be a nonempty compact convex subset of a CAT(0) space X . Let
t:K—>K and T:K —>CB(K) be a single-valued and a multivalued nonexpansive

mappings, respectively, and F(t,T)=# satisfying Tw={w} for all we F(t,T) .
Moreover, pair t and T satisfies condition (A). If sequences {X }, {&,} and {f,} are
defined as in (2) and (3) respectively, then {X_ } converges strongly to some common fixed point
of t and T.
Proof. First, we show that F(t,T) isclosed. Let {X } beasequencein F(1,T) converging
to some point Z € K . Since
d(x,,tz) =d(tx,,tz)
<d(x,,2),
we have
limsupd(X,,tz) < limsupd(x,,z)=0.
By uniqueness of the limit, we ;1ave tz=12. Also,
d(x,,Tz)<H(x,,Tz)
<d(x,,z)—>0asn— o.
This implies that X, converges to some point in TZ and hence zZ € F(t,T). By Lemma 3.1,
limd(X,, p) exists forall p€ F(T) and let us take to be C.If C=0, then there is nothing

nN—oo

to prove. If C> 0, then in view of Equation (3.3) forall p e F(t,T), we have

d(Xn+17 p) S d(Xn7 p):
so that
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inf d(X..;, P)< mf d(Xan)

peF (t,T)
which amounts to say that

d(X,.;, F(T)) <d(x,,F(T))

and hence 1imd(X,, F(t,T)) exists. Owing to Condition (A") there exists a nondecreasing

n—oo

function f such that
lim f(d(x,,F(t,T)) <limd(X,,tx,)=0

or,
lim T(d(x,, F(ET)) < lim d(X,, Tx,) < lim d(%,,2,) =0
so that in both the cases lim f(d(X,, F(t,T)))=0. Since, f isanondecreasing function and

n—o0

f(0) =0, therefore limd(x,,F(t,T))=0.

This implies that there exists a subsequence {Xnk } of {X,} such that

1
d(Xnk, pk)Syforallkzl

wherein {P,} isin F(t,T).By Lemma 3.1, we have

1
d(xnkﬂa pk)S d(xnk’ pk)gz_ka
so that

d(pk+1’ pk)<d(pk+ls ny )+d( apk)
< 1 1 1
- 2k+l +2_k< 2k—l ’
which implies that {p,} is a Cauchy sequence. Since F(t,T) is closed, therefore {p,} isa

Me+1

convergent sequence. Write lim Py = P. Now, in order to show that {X_ } converges to P
k—o0

lets proceed as follows:

d(xn ,p)sd(xn ,Pp)+d(p, p) > 0ask — oo,

so that that 11md(Xn ,P)=0. Since limd(X,, P) exists, therefore X, — P.

nN—o0
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1. Introduction
The continuous wavelet transform of a function fe L?(R%) with respect to ¥ € L*2(R%) is

defined by
(Wwf)(s, t)=<f,T.DY >, (s,t)el:={(st):s>0,teR?},
Where D; and T, are respectively the dilation and translation operators defined by
-d _
D)) = s~ T29(s™0)  and (T)(x) = P(x —0).
Let 1,3, € L2(R%) be such that
fo T —_ — 1
Cpyp, = Jy ¥1(aw) Yy(aw)—da
is a non-zero constant for w # 0. Therefore we have
dadb

fG) = €y, p, JIle Wy, £)(@b)(T,Datp2) () g (1.1)
Where the convergence is in L?(R%) sense. The continuous wavelet transform was extended to
LP(R%) [9]. The convergence of Riemann sums of the inverse windowed Fourier transform was
studied in [3, 10, 12]. The approximation of the integral (1.1) using Riemann sums was studied in
[7, 11].
Setting a >e =1 and b >0, we define the operator Sgp ey, w, @S

bd(ad— e)
m ZjeZ.keZd < f’ th'kDSj ll)l > th_szjlpz 4 (12)
1.¥2

Where (Sj,tj,k) € Ej,k = [af—l/z,af+1/2) x alb (k + [—1/2’ 1/2)d )

It can be easily seen that S j ¢y, y, f canbe viewed as a Riemann sum of the integral in (1.1) with

dadb

respect to the Haar measure —5= on T

Sa'b'E;wl ﬂPz f =

In this paper, we study the convergence of Sgpeqy, w, In B(Lp(Rd)) by using
Calder6n—Zygmund operators, where B(Lp (]Rd)) is the space of all bounded linear operators on

LP(R%),1 < p < . We show that it tends to the identity operator for all 1 < p < o provided
Y, and P, satisfies certain smoothness and decay conditions. We also investigate the
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convergence of S, ey, v, as operators from Hardy space HY(R%) to L*(R%) and also from
their respective duals
L*(R%) to BMO(R%) respectively

2. Definitions, Notations and preliminary results
Notation 2.1. We use the following set of multi index:
a=(a,ay, .., ag), lal = a; + a, + -+ ay, al =aq! ay! ..y,
lex|
x% =M Loxg®, (X)) = x“f(x), 0N = mf(x)

Also, for a € R, |a] denotes the greatest integer less than or equal to a.
Definition 2.2. [2] The Banach space F;(R%) defined by
Fi(RY) = {f e 2(RY) : W,f,Wrp € L)},
Where ¢(x) = (02, + ...+ é)zxd)de‘""2 is a fixed function and
dudv

1
@ ={o:loll = (5 1w or22)” < =

Definition 2.3.[9]We call K(x,y) a Calderon — Zygmund Kernel if there exists constants C;, > 0
and 0 < § < 1 such that for any (x,y) € R* x R? with x # y, we have

Cy
IK(x,y)| < =2 6 (2.3.1)
N Cely =y g 1
|K(x.y)—1<(x,y)|$%, |y—Y|S§Ix—yI, (2.3.2)
8
, Crlx —x , 1
|K(x,v) — K(x,y)| S%, |x — x| Silx—yl, (2.3.3)

Definition 2.4. We call T a Calderon —Zygmund operator if

(i) T is a bounded operator on L?(R%),

(i) there exists a Calderon- Zygmund kernel K(x,y) such that for any compactly supported
f € L2(RY),

@ = [ Kenroddy, x € RA\supp(f).
Rd
It is well known fact that a Calderon —Zygmund operator is bounded from L'(R%) to the weak
L'(R%) . Here, we state the following result which can be proved by standard method.
Proposition 2.5. [5, Theorem 8.2.1] Let T be a Calderon- Zygmund operator with kernel
satisfying (2.3.1), (2.3.2) and (2.3.3).Then T is a bounded operator from L'(R%) to
L' year(R?) and

T o . < 0Y2||T|| 202 + 075C,Cs, forall 8> 2d2 +1,

weak T
where Cs = d’/2 (3/2)‘“5 fRd\[—l 1 |u|=4=%du.
The property of Calderon — Zygmund operators which is used in this paper is that they are bounded
from H'(R%) to L'(R%). We state the result without proof.
Proposition 2.6. Let T be a Calderon- Zygmund operator with kernel satisfying (2.3.1), (2.3.2)
and (2.3.3).Then T is a bounded operator from H!(R%) to L'(R%) and
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Tl or < 0Y20ITl 202 +079C,Cs,  for all@>2d"72 +1,
) —d—
where C5 = d /2(3/2)‘”5 fn«d\[—1,1]d [u|~%-%du.

The following result is also useful which is known as Marcinkiewicz interpolation theorem.
Here we state it with an explicit estimation on the operator bound.
Proposition 2.7. [4, Theorem 1.3.2]. If an operator T satisfies the following two conditions,

||Tf||LP1W2ak = Cl||f||LP1, ||Tf||LP2W9ak = Cz”f”LPZ'
Where 1 < p; <p, thenfor 0 <t <1, 1/p G t)/pl + t/pz, we have

- 1
ITf Il < MGG [Ifllup. where M = 2(p/(p = p2) +p/(p2 = P)) /7.
The following result shows that for wavelet functions from F; (R%), the operators Sabespy by

converge to the the identity operator in B(L?(R%)).
Proposition 2.8. [7, Theorem 4.2]. Let 5,1, € F1(RY) be such that Cy, ,, # 0. Then
Sabep, p, 18 well defined on R? and
(a,bl)ilrgl,o) || Sa,b,e;lpl,lpz -1 ||L2 2 =0.

Now the following auxiliary result gives the sufficient condition for f € F;(R%).
Proposition 2.9. [13, Theorem 3.5] Set ny = ld/ZJ + 1. Let B and y are positive constants such
that /2 <y<d émd / B + 4/ 2y) <1 4~ Suppose f satisfy the following conditions,

. o _

@ 1@* N < /(1 + |x]B’ la| <mny—1,

(i) [f = Zlajng-1 (04O x — )/l | < Clx—t]” |y >4/,
(iii) fpa x* f (x)dx = 0, whenever |a| <ny—1,
Then f € F;(R%).

2. Main Result
Theorem 3.1. Let Sy ) e.p, v, be defined as in (1.2). If Yy and 1, are functions on R4
satistying the following conditions,

1O PIDI< /g 4 e 12l Smo—1,

(iD) [1hi = Xjajsng-1(0“Y ) () (x = )/al| < Clx — | , and

(iii)fRdx“ybi(x)dx = 0,whenever |a| < n,— 1, where ny = |d/2] + 1,8 and y are positive
d 1 1 1

constants such that ¢/, <y < d and /ﬂ + /(2)/) <

Then we have

Mg pyo@0) || Sepepyp, = [ |lpop =0, 1<p <o, 3.1.1
lima,p)-1,0) | Sapespa iy = 111t 51100, = O 3.1.2
im0 || Sapeswr y = 1 |lu1o2 =0, 3.13

limg p)-1,0) || Sapepp, = | ||L°° -smo = 0, 3.14

Where [ stands for corresponding embedding mapping.
Proof of theorem 3.1. We first show that S, j e, 4, i Well defined on LP(R?). For that, a

standard method is to prove that it is a bounded linear operator on L2 (R%) and related to some
Calderon — Zygmund kernel. For Sg j, o, 0, » it is sufficient to show that
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K(x,y) = ﬁ S jezkerd(Tey Ds, 9200) (Te, Doy 1) () 3.15
1
Is a Calderon- Zygmund kernel.

We need some lemmas for the proof of main result.

Lemma3.2. Let ¥, and 1, are functions on R? such that |i;(x)| < m and
[Y;(x) — ;M| < Clx—y|’, i=1,2, where ¥y and € are constants, 0 <v <1 and € > 0.
Define

K(x, y) T Z]EZkéZd wj, k(Tt]sz] ¢2)(x) (Tt] sz,%) (y) 3.1.6
Y1

Where w;) assumes values -1, 0, 1. Then K(x,y) is a Calderon-Zygmund kernel with constant

S pdrive s
(2+a1/z) C C( 2y @ 2)

bd(ad— e) —e af-e

= — 3.1.7
a2 1Cypy 97 |

s(d+vm), d+vm)/2+(d+&)(1-1)/2
d+ a 2 gld+un n
+(1 +2 vn) V€N < ad+vn_e + ald+e)(A-n)—(d+vn)_,
and 6 = vn, where n = s/(Z(d +v+ e)).

The above result can be proved with the standard method for convergence and basic properties of

orthonormal wavelets (see[1,6]).
For the boundedness of the above operator, we have the following lemma.
c

Lemma3.3. Let ¥; and 1, are functions on R% such that [y;(x)| < T
[W;(x) =y <Clx—y|Y, i=1,2, where v and € are constants, 0 <v <1 and € > 0.
Let
Sabep, p, bedefinedasin (1.2). If S p e, 4, is well defined on L*(R?) and
lim g p)-(1,0) || Sabepy i, — 1 ||L2 2 =0, then Sgpeqy, w, is well defined on LP(R%) and
(a,bl)iE%LO) I Sapesps = Ilpop =0, 1<p<e,
Proof of Lemma 3.3. Let K(x,y) be defined by (3.1.5). By lemma (3.2), K(x,y) is a
Calderon- Zygmund kernel i.e; K(x,y) satisfies (2.3.1), (2.3.2) and (2.3.3), where C), is given
by (3.1.7), §=vn, and n= s/(Z(d +v+ s)). It is clear that C, <o . Consequently
Sabenw, w, » and therefore Sqp g, w, — I, are Calderon — Zygmund operators with the same
kernel.
As,
limg p)-(1,0) || Sapeprp, — 1 ||L2 2=0, forany 0 <A< 1, there exists constants a, and
by such that forany 1 < a < ay,,0<b < b, , we have
|| Sapesps i, - I |12z <A< 1.
Using proposition (2.5), we have
lim(a,b)_,(ljo) || Sa.b,eil,bl,l,bz -1 ||L1 _’Llweak < Mg, where M(S = 2d/2+236d/2 + 49_5Ck65.
By using proposition (2.7), we have
2 _2
| Sabeprap £ = £ lliw < MMs /=122 o) fllp, 1<p <2,
where M = 2(p/(p —p1) + p/(p, — p))l/l’. Therefore
| Sabespnapy = 1 |lpoir < MMs =127, 1 <a < ay, 0<b < by
Alsofor 1<a< ay, 0<b < by, Sup Mg < . Therefore, we have

and
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(a’bl)iir(lllo) | Sapespyap, = I|lpop =0, 1<p <2
Next, we have consider the case of 2 <p <oo. For that, we consider the adjoint of

Sapenp, p, = 1. It is clear that (S*a.b,e;llzl,l/}z h)(y) = fRa K(x,y) h(x)dx, where K(x,y) is
also a Calderon-Zygmund kernel and hence, S*qp e, y, 18 @ Calderon-Zygmund operator. By
using similar arguments, we have
(a,bl)iir(ll,O) | STabeprpr =~ 1 liaoa =0, 1<p<2.
On the other hand, it is known that
(a,bl)ii%,o) l Sabei . = 1 llip e = (a,bl)igh,o) I STabeprp, = 1 llua o, E+a =b
Thus we have

w0 [ Savese = 1llpp =0, 2<p <oo

Now we need to show the convergence of Sy p e, w, in B(L?(R?)), for which it suffices to
prove that ¥, ,, € F;(R%) . By proposition (2.8), it is clear that the wavelet functions from
F1(R®) , the operators Sabespy p, cOnverge to the identity operator in B(L2 (Rd)). Also by the

virtue of propostion (2.9), it is clear that ¥; , 9, € F;(R%). This completes the proof of (3.1.1).
Now we proceed to prove (3.1.2). By proposition (2.5), we have

d d M,
||Sa,b,e;1p1,1p2 - I“Ll_’l‘lweak <2 /2+29 /2||Sa,b,e;1,b1,1/12 - I||L2—>L2 +F'
1 . .
Where 6 > 2d /2 + 1 is an arbitrary constant and
8/, 3d+s
_ 4Cd /23 du
My = Supi<a<zo<v<i ™ yavs RA\[-1,1]4 [y 4%8 < oo

8906

For any € > 0, we can find some 8, > 2d"/2 + 1 such that M, <

On the other hand, we can see from (3.1.1) that there exists some 1 < ay, <2 and0 < b, <1

such that || Sep ey, = I |12 512 < m ,1<a<ay,0<b< b,
0

Hence ||Sapespy w, = 1|10, < &1 <@ <ay,0<b<b.

This proves (3.1.2).

Now (3.1.3) can be proved similarly as that of (3.1.2) by using proposition (2.6).

Also, (3.1.4) is the immediate consequence of (3.1.3) because BMO and L” are the duals of H?
and L' respectively.

REFERENCES:
[1] 1. Daubechies, Ten Lectures on Wavelets, STAM, 1990.

[2] H.G. Feichtinger, W. Sun, X. Zhou, Two Banach spaces of atoms for stable wavelet frame expansions, J. Approx.
Theory 146 (2007) 28-70.

[3] H.G. Feichtinger, F. Weisz, Inversion formulas for the short-time Fourier transform, J. Geom. Anal. 16 (2006)

507-521.
4] L. Grafakos, Classical Fourier Analysis, second edition, Springer-Verlag, Berlin, 2008.
5] L. Grafakos, Modern Fourier Analysis, second edition, Springer-Verlag, Berlin, 2008.

6] E.Hernandez, G. Weiss, A First Course on Wavelets, CRC Press, New York, 1996.

7]  B.Liu, W. Sun, Inversion of the wavelet transform using Riemannian sums, Appl. Comput. Harmon. Anal. 27 (2009)
289-302.

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7,2016, pp. 31-36



36 NEYAZ AHMAD SHEIKH AND OWAIS AHMAD

[8] V. Perrier, C. Basdevant, Besov norms in terms of the continuous wavelet transform. Application to structure
functions, Math. Models Methods Appl.Sci. 6 (1996) 649-664.

[91] E.M. Stein, Harmonic Analysis, Princeton University Press, 1993.

[10] W. Sun, Asymptotic properties of Gabor frame operators as sampling density tends to infinity, J. Funct. Anal. 258
(2010) 913-932.

[11] X. Sun, W. Sun, Convergence of Riemannian sums of inverse wavelet transforms, Sci. China Math. 54 (2011)
681-698.

[12] F. Weisz, Inversion of the short-time Fourier transform using Riemannian sums, J. Fourier Anal. Appl. 13 (2007)
357-368.

[13] K.Li, W.sun, Convergence of wavelet frame operators as the sampling density tends to infinity, Appl. Comput.
Harmonic. Anal. 33(2012) 140-147.

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7,2016, pp. 31-36



JMI INTERNATIONAL JOURNAL OF VOL 72016 |37-42
MATHEMATICAL SCIENCES

Some Conditions on Concircular Curvature Tensor in Kenmotsu
Manifolds

Sushilabai Adigond and C. S. Bagewadi

Dept of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India.
Email — smadigond@gmail.com;prof bagewadi@yahoo.co.in

Abstract : The object of the present paper is to study Ricci solitons in Kenmotsu manifolds when the concircular curvature
tensor satisfies Ricci-semisymmetric, Ricci-pseudosymmetric, locally ¢-symmetric, @-recurrent, generalized ¢-recurrent
conditions.

Keywords : Ricci soliton, Locally ¢-symmetric, ¢-recurrent, Generalized¢-recurrent, Kenmotsu Manifold, Einstein
metric, Concircular curvature tensor.

AMS Classification : 53C05, 53C20, 53C25, 53D10.

1. Introduction

During 1982, Hamilton [12] made the fundamental observation that Ricci flow is an excellent tool
for simplifying the structure of the manifold. It is a process which deforms the metric of a
Riemannian manifold analogous to the diffusion of heat there by smoothing out the irregularity in
the metric. It is given by

‘;—f — —2Ricg,
where g is a Riemannian metric. Ricg is the Ricci curvature tensor, t is time.
Ricci solitons move under the Ricci flow simply by diffeomorphisms of the initial metric that is
they are stationary points of the Ricci flow in space of metrics of ¢,: M — M. Here the metric
g(t) is the pull back of the initial metric g(0) by a 1-parameter family of diffeomorphisms (t)
generated by a vector field on a manifold M.
A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian manifold
(M, g). A Ricci soliton is a triple (g,V, 1) with g a Riemannian metric, V is a vector field and 4
is a real scalar such that

Lyg + 2§ + 2Ag = 0, (1.1)
Where S is a Ricci tensor of M and Ly denotes the Lie derivative operator along the vector field
V, A is constant. A Ricci soliton is said to be shrinking, steady and expanding when A is negative,
zero and positive respectively.
Let (M, g) be an n-dimensional differentiable manifold of class C* . We denote V by its
Levi-Civita connection. We define endomorphisms R(X,Y) and X A Y by

RX,Y)Z = VyWZ— VyWZ — VixyZ, (1.2)

X AYVVZ = gV, 2)X - g(X,2)Y, (1.3)

respectively, where X, Y, Z € y(M), x(M) being the Lie algebra of vector fields on M. The
Riemannian Christoffel curvature tensor R is defined by

R(X,Y,Z,W)=gRX,Y)Z,W), W € y(M).Let S and r denote the Ricci tensor and scalar
curvature of M respectively. The Ricci operator Q is defined by g(QX,Y) = S(X,Y).
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We define the tensors R - S and Q(g,S) by

(RX,Y) - $) (X1, X2) = =S(R(X, V)X, Xp) - S(X1, R(X, V)X5),

Q9,5 (X1, X5 X,Y) = =S((X A Y)Xy, Xp) - S(X1, (X A Y)X;),
respectively, where X, X5, X, Y € y(M).
A Riemannian manifold satisfying R-S = 0 is called Ricci-semisymmetric. Where S is the
Ricci tensor. If the tensors R -S and Q(g,S) are linearly dependent then M is called Ricci-
pseudosymmetric. This is equivalent to

R-S = LsQ(g,S),

holdingontheset Us = {x € M: S # % g at x}, where Lg is some function onUs.

The study of Ricci solitons in contact geometry were initiated by Sharma [23] and Tripathi [25].
Later the study was extended by Calinet. al. [6], Bagewadi et. al. ([16], [2]), Debnath et. al. [9],
Chandra et. al. [7], Lorentzian a-Sasakian, Trans-Sasakian,(LCS), and almost C(a)manifolds
using Eisenhart problem [10]. The authors Ashoka et. al. ([1], [4]) and Nagaraja et. al. [18] studied
Ricci solitons in (LCS),, , Kenmostu manifolds using semi-symmetric and Ricci-semisymmetric
conditions on different curvature tensors.

The notion of local symmetry has been weakened by many authors in several ways to different
extent. As a weaker version of local symmetry, Takahashi [24] introduced the notion of ¢-
symmetry on a Sasakian manifold. Generalizing the notion of ¢ -symmetry, De et. al. [8]
introduced the notion of ¢ -recurrent Sasakian manifold. In the context of contact geometry, the
notion of ¢ -symmetry is introduced and studied by Boeckx et. al. [5] with several examples.
The study of generalized ¢ -recurrent Sasakian manifolds was initiated by Oubina et. al. [19] and
further it has been carried out by the authors Bagewadi et. al. ([26], [27]), Jun et. al. [17], Patilet. al.
[20], Prakasha et. al.([21], [22]) and many others.

Motivated by the above studies, in this paper we study Ricci soltions in Kenmotsu manifolds when
concircular curvature tensor satisfies Ricci-semisymmetric, Ricci- pseudosymmetric, locally
@-symmetric, ¢-recurrent, generalized ¢-recurrent conditions.

2. Preliminaries

Let M be a n -dimensional almost contact Reimannaian manifold with structure
tensors(¢, £,1, g). whereg isa (1,1) tensor field, & is the structure vector field, n is a 1-form and
g is a Riemannian metric. It is well known that (¢,¢,7n,g) structure satisfies the following
conditions:

né) =1 nee =0, ¢§ =0, (2.1)
0*X = =X + n(X)¢, gX,&) = n(X), (22)
g(@X,9Y) = g(X,Y) - nX)n(Y), (2.3)
for all vector fields X, Yon M. If moreover
Vxp)Y = g(pX,Y)¢ - n(Y) ¢X, (2.4)
Vyé =X - n(X)§, (2.5)

where V denotes the Riemannian connection of g hold, then (M™,¢@, ¢, 1, g) is called
Kenmotsu manifold.
In Kenmotsu manifold, the following relations hold:

WxmY = gleX,9Y) = g(X,Y) - n(X)n(Y). (2.6)
RX,Y)Z) = n(V)g(X,Z) - n(X) g(¥,2). 2.7

From (2.7), it easily follows that
RX,Y)§ = n(X)Y -n(¥V)X, (2.8)
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R(E,X)Y = n(¥)X - g(X,Y)s, (2.9)
SX,$) = —(n—DnX), (2.10)
S(@X,9Y) = SX,Y) + (n = DnX)n(Y), (2.11)

for any vector fields X,Y,Z, where R is the Riemannian curvature tensor and S is the Ricci
tensor.
Let (g, ¢, A)be a Ricci solition in an n-dimensional Kenmotsu manifold M. From (2.5) we have

Leg)(X,Y) =2[g(X,Y) —n(X)n(¥V)]. (2.12)
From (1.1) and (2.12) we have
SX,Y)=nX)n¥)- 1+ 1DgX,Y). (2.13)
The above equation yields
QX = nX)é- 1+ 1)X, (2.14)
SX, 6 = —MnX), (2.15)
r=—-An- (n—-1), (2.16)

Where S is the Ricci tensor, @ is the Ricci operator and r is the scalar curvature on M.
Definition 2.1. A Kenmotsu manifold is said to be locally ¢-symmatric if
P*(VwOX,Y)Z) = 0, (2.17)
for all vector fields X,Y,Z, W orthogonal to .
Definition 2.2. A Kenmotsu manifold is said to be locally concircularly ¢-symmetric
P2(VwC)(X,1)Z) = 0, 2.18)
for all vector fields X,Y,Z, W orthogonal to .
Definition 2.3. A Kenmotsu manifold is said to be concircularly ¢-recurrent manifold if there
exists a non-zero 1-form A such that
P (VO (X, V)Z) = AW)C(X,Y)Z, (2.19)
for all vector fields X, Y, Z, W orthogonal to ¢.
Definition 2.4. A Kenmotsu manifold is said to be generalized concircularly ¢-recurrent manifold
if its curvature tensor C satisfies the relation
02((%,0)(X,V)Z) = AW)C(X,Y)Z +BW){g(Y,2)X — g(X,2)Y}, (2.20)
Where A and B are 1-forms, B is non-zero and these are defined by
AW) = gW, p1),BW) = g(W,p,),
and p; , p, are vector fields associated with 1-forms A, B respectively. Here C is the

concircular curvature tensor given by
-

CXNZ = RX,NZ ——=[g(Y,.2)X - g(X,2)Y. (2.21)

Taking X = &, Y = X, Z =Y in(2.21) and using (2.2), (2.8) and (2.9), we obtain
CEXY =[1 - WX - g, 8. (2.22)
cx g =1 = | ey - nx]. (2.23)

3. Ricci Solitons In Kenmotsu Manifold Satisfying C- S = Lg Q(g,S)
Let us consider an n-dimensional Kenmotsu manifold which satisfies the condition
C(X)- S = Lsg Q(g,S) implies that
S(CEX)Y, Z) + S(Y, C(6,X)Z) = Ls[S((E A XYY, Z) + S(Y, (¢ A X)Z)]. 3.1)
Using (1.3), (2.10), (2.22) in (3.1), we get
|Ls + ——| SCL.2)n () + S X)n(2) + (n- 1)n(2) g(X,Y)

n(n-1)
+ (n-Dn¥)glX,2)] = 0. (3.2)
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If Lg+ (n(n;_l)) # 0 then equation (3.2) reduces to
[SX,Z)n(Y) + S, X)n(Z) + (n- Dn(2) gX,Y) + (n- DY) g(X,2)] = 0. (3.3)
Let Z = ¢ in(3.3) we have

SX,Y) = ~(n- 1) g(X,Y). (34
Taking X = Y = e; and summingover i = 1, 2,.............,n in (3.4) we get

r = -nn-1). (3.5)
In view of (2.16) and (3.5) we obtain
= oD

n
Hence we state the following:

Theorem 3.1. A Ricci soliton in n-dimensional Kenmotsu manifold satisfying
C-S = LgQ(g,5) isexpanding provided Lg # — ( 4 )

n(n-1)
Let (M", g) is a n-dimensional Kenmotsu manifold and (g, V, 1) is a Ricci soliton in
(M™, g). If V isaconformal killing vector field, then

Lyg = pg. (3.6)

From (1.1), we have
S = (Ag + ;Ly9). (3.7)
From (3.6) and (3.7), we get
S, V) = (2 +2) gx,v) (3.8)
Let (M", g) be a Kenmotsu manifold. Then from (3.7), we have
C-S = SCXY)ZW) + S(Z CX W).

C-S=-QAQ+HgcxzZw) + gCXNW,2)]. (3.9)
Using (2.21) in (3.9), we get
C-S=-@AQ+YHRXY,ZW) + RXY,W,2)] = 0. (3.10)

i.e (M™, g) is concircular Ricci-semisymmetric.
Conversely, suppose C - § = 0.

SCX,VZW) + SZ cX, )W) = 0. (3.11)
Taking X = W = & in(3.11) and using (2.10), (2.22) and (2.23), we get
SY,2) = —-(n-1)g(,2).

Substituting this in (1.1), we obtain
(Lvg) V,2) = pg(¥,2).
where p = 2((n- 1) - A) i.e V is conformal killing. Thus, we state the following:
Theorem 3.2. Let (g, V, 4) be aRicci soliton in Kenmotsu manifold (M™, g). Then (M™, g) is
concircularly Ricci-semisymmetric if and only if V' is conformal killing.

4, Ricci Soliton in Generalized Concirculare - Recurrent Kenmotsu Manifold
Let us consider a generalized concircular @-recurrent Kenmotsu manifold. Then by virtue of (2.2)
and (2.20) we have
— (W OX,Z) + n((Pw O (X, Y)Z)E
= AWCX,Y)Z + BIWM{g(Y,2)X - g(X,2)Y}. (4.1
From which follows that
—9((w X, NZ,U) + n((Fw O (X, ) Z)n(U)
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= AW) g(C(X,Y)Z,U) + B(W){g(Y,Z) g(X,U)- g(X,Z) g(Y,U)}. (4.2)
Let{ ¢;}, i = 1, 2,--, n be orthonormal basis of the tangent space at any point of the manifold.
Then by putting X = Y = e; in (4.2) and taking summation over i, 1 < i < n, we get

Cus.2) = T g01,2) - ZEE (g1 2) - 00 ()]
- AW [S(,2) - L g(v.D)] - BOW) (n- 1) g(.2). 4.3)
Replacing Z by ¢ in (4.3) and using (2.2) and (2.10), we have
TwS)(¥,8) = [22 + aw) ((n- 1) + 2) - BW) (n- 1] n(v). (4.4)

Now we have

MW, 8 = WS, &) - S(MwY,$) - S(Y, V).
Using (2.5), (2.6) and (2.10) in the above relation, it follows that

"wS(,8) = =[S, W) + (n- 1) g(¥,W)]. (4.5)
In view of (4.4) and (4.5), we have
S(V,W) = —(n- 1) g(v, W) - =2 () - AW) (- 1) + I )
+BW)(n- 1)g(Y, w). (4.6)
Replacing Y by @Y and W by W in (4.6) and using (2.3), (2.11), we obtain
S, W)= —(n-1)g,w). 4.7)
Now, by virtue of (4.7) and (2.13), we get
A=

n
Therefore, A is positive. Hence we state the following:
Theorem 4.1. A Ricci soliton in n-dimensional generalized concircularly ¢-recurrent Kenmotsu
manifold is expanding.
Similarly, we obtain the same results for locally concircularly ¢-symmetric and concircular
-recurrent Kenmotsu manifold. Hence we get the following corollaries:
Corollary 4.1. A Ricci soliton in n-dimensional locally concircularly ¢-symmetric Kenmotsu
manifold is expanding.
Corollary 4.2. A Ricci soliton in n-dimensional concircularly ¢-recurrent Kenmotsu manifold is
expanding.
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Abstract: In this paper, we contrive certain properties of new complex continuous wavelets (which we proposed in a recent
time) such as their time bandwidth product and relationship between scale and frequency using them and compared it with
the well known existing wavelets which help in selecting of these wavelets in any application of interest.
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1. Introduction

Complex continuous wavelets over real-valued continuous wavelets give more detailed
information in transient signal detection. The complex continuous wavelet transform of a real
signal is plotted in modulus form and phase form, rather than in real and imaginary forms. In the
complex continuous wavelet transform analysis, the modulus maxima and the phase crossings,
reveals the locations of sharp signal transitions. Also, by making use of the phase information, the
local maxima and inflection points, can be recognized.

It is well known fact that the choice of mother wavelet is application-dependent. So far there is no
means of selecting a suitable wavelet basis, other than experience and the method of choosing an
appropriate wavelet basis has primarily been that of trial and error. In the paper [1], the author
discussed about the properties of wavelets which may helps mother wavelet selection in a chosen
application.

So in this paper we discuss certain properties of the family of new complex continuous wavelets [2]
which we proposed in a recent time, which may help in determining the choice of mother wavelet
for various applications.

2. Complex Continuous Wavelets:
2.1. New complex continuous wavelet
This family is built with different order by starting from the complex function

v(x)=e"

1+x
and taking the k™ derivative of /4 (X) the integer K is the parameter of this family and
represents the order of the wavelet of the family i.e. y, (x) is a Complex Continuous Wavelet for

each K and
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In the previous formula, C, is such that Hwk (X)H2 =1,vk=12,3....... ,8.
. 5 N\12
where 1/, (X) isthe k™ derivative of ¥ ( and C, = I dX
It has been verified that for the above functions i, (X) ,
. [lr(fdx=1<0 vk=1,23........8.
l A 2
2 |V, (@ ‘
U CI//k = J Lda) <0
[0
. [v(x)dx=0, Vk=1,23......8 .
MoreoverJ‘ ka(X)dXZO,Vk=2,3 ......... ,8.
Where ‘i’k (a)) is the fourier transform of ¥/ (X) and
w)= j v, (X)e " dx = z(iw)" el
Hence the functions ¥/, (X) ,Vk=1,2,3......... ,8 forms a family of One dimensional complex

continuous wavelets. Each member is named as crsw followed by their order.
2.2. Some existing complex continuous wavelet:

2.2.1. Complex Gaussian Wavelets (cgau)

This family is built starting from the complex Gaussian function f(X)= Cpe_ixe_><2 and by
taking the p‘h derivative of f(X). The integer P is the parameter of this family and in the

2
previous formula, C_is such that Hf P (X)H =1, where fP(X) is the p" derivative of

p
f(X).
2.2.2. Complex Morlet Wavelets (cmor)

XZ

1 ezinfcxe_Tb
Jr i,

parameter and fC is a wavelet center frequency. The order of the wavelet is defined by fC - fb .

A complex Morlet wavelet is defined by i ( X) = where fb is a bandwidth
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3. Properties
3.1. Time-bandwidth product of the wavelets

The time width and the frequency width of the wavelet function ¥/, (X) are defined as

0 o0

Ixz ‘y/k(x)‘zdx .[a)z ‘i‘k(a))rda)
A} == and A2 === ;
[ [ (%)) elx [1¥ (o) doo

Thus Af .Ai defines the time-bandwidth product of the wavelet. Lesser values of Af and Afd

correspond, respectively, to higher time and frequency localizations. Among the existing complex
continuous wavelets the optimum time-frequency localization (lesser time-band width product)

holds only for those complex continuous wavelets containing Gaussian function e_x2 [1] such as
complex gaussian and complex morlet wavelets.

The values of time width and frequency width for each member of the new complex continuous
wavelets along with complex morlet and complex gaussian wavelets are computed and tabulated.
From the tabulated values it can be observe that the time width of these new complex wavelets has
got lesser values as compared to that of complex gaussian wavelets and complex morlet wavelet
and hence are more appropriate to use in those application which requires good localisation in time
such as examination of QRS complex in ECG signals. The Power Spectral Density (PSD) which
shows the strength of the variations(energy) as a function of frequency are also computed for each
member of the family and are given in the following figure.

New Complex Complex Morlet
Complex Gaussian wavelets wavelets wavelets

Order At2 Ai At2 -Ai Order At2 Ai At2 ~Ai Order At2 Alzu Atz -Ai

1 [0.50000] 5 2.5 1 1 3.6667| 3.6667|[1-1.5 10.3750040.1451[15.054
0.45000]7.6000( 3.42 0.45455(7.6818( 3.4917( 1-1 [0.2500/40.483 [10.121
0.44737]10.053(4.4972 0.21893114.024| 3.0703 |[1-0.5 ]0.1250¢41.4784|5.1848
0.44895]12.429(5.5802 0.14430122.502| 3.24711-0.1 ]0.0250¢49.4784|1.2370
0.45114]14.759(6.6584 0.11118]33.000] 3.6689 || 6-2 ]0.5000[36.5000|18.250
0.45326]17.056(7.7310 0.090911(45.500( 4.1365

0.45520119.32918.7988 0.076923(60.000( 4.6154
0.45694)21.58419.8624 0.066667([76.500( 5.1

03 NN bW
0~ O L bW

Table 1: Time-width, Frequency-width and timeband-width product of the wavelets
3.2 Conversion of scale to frequency:

The continuous wavelet transform (CWT) converts the signal from time domain (one dimension) to
scale-time domain (two dimension) which is not very easy to understand compared with the Fast
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Fourier Transform (FFT) result [3]. The scale value can be converted into frequency
(pseudo-frequency), the value of which depends on the central frequency of the applied wavelets
and the scale value @ and is given by

f
f,=—5
aA

where
. a isascale.
. A is the sampling period.
. fc is the center frequency of a wavelet in Hz.
. fa is the pseudo-frequency corresponding to the scale @, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of frequency fc and f = l

where A is the Fourier wavelength (frequency Fourier factor) and the relationship between the
equivalent Fourier period and the wavelet scale can be derived analytically for a particular wavelet
function by substituting a cosine wave of a known frequency into wavelet transform definition [4]
and computing the scale @ at which the wavelet power spectrum reaches its maximum and it is

found to be 4, = 4—72- where kK =1,2,3....,8.
2k +1
The following table shows the values of fC for various members of the wavelets.
k| f,
113
4n
215
4n
3|1
4n
419
4n
501
4n
6 |13
4n
715
4n
8| 17
4n

Table 2: Central frequency fc

The following figures shows the center frequency based approximation of complex wavelets.
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Figure 1: Central frequency based approximation of wavelets members

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 43-49



48 MOHAMMED RAYEEZUDDIN, B KRISHNA REDDY

craw |

Waveletierswl ) PSD
" AR T .1.|.n.l.m

-1 - - - 2 . F] 4

o = w
Waveletierswl) PSD

& - 3 2 - 0 1 ] 3 4 E -1 # -+ - -2 [ ]

Waveldicrsnd) P51

Figure 2: PSD of wavelets members 1-4

:nmS

Waveleticrsns) PSD

] 1 ] 4 6 0 "

Waveldt(crsws) PSD
i b ma T T T T T
0 0o - .
TS ok g
-1wop L L L " L L "

] -1 # - -+ - 1

WaveldicrswT) P51
0 T

-

_ W |

T]ml'.l"ucund-i

m—.l part o
——— Imagin; art Frequency / He

Figure 3: PSD of wavelets members 5-8
Conclusion.
The time width, frequency width and time-band width product for the new complex continuous
wavelets are computed and observed that the time width and time-band width product have lesser
values for some of the members of the new complex wavelets and are appropriate to use in those
application which requires good localization in time. The plots of Power Spectral Density (PSD) for

each members of the family are also computed. The scale to frequency relation using these new
complex wavelets are also shown.
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Abstract: With the advent of high-throughput techniques, such as Next Generation Sequencing (NGS), it is possible to
sequence the entire genome with massive paralel speed in less cost and time. The NGS as deep sequencing method has
killed microarray techniques and opened several new avenues in biomedical research including deeper study of disease
mechanism. However, computational analysis of NGS data is still challenging which requires complex computational
methods and huge computation power. In this paper, we have reviewed brief background of NGS technologies, and an
attempt has been made to present how it works as a new platform for disease studies.

1. Introduction
History of sequencing techniques goes long back when Frederick Sanger announced the sequence
of first protein (bovine insulin) in 1955. However, earlier methods of DNA sequencing were
announced in 1977 by Frederick Sanger and his team (Sanger et al., 1977) which involved chain
termination. This came to be known as ‘ Sanger Sequencing’. In the same year Allan Maxam and
Walter Gilbert (Maxam and Gilbert, 1977) deployed fragmentation method for DNA sequencing.
These two methods have been proven to be benchmark in the field of sequencing to study genesand
genomes. Somehow due to use of more radioisotopes in later technique, gradually discouraged it
and as aresult Sanger sequencing became the prevailing DNA sequencing method for the next 30
years (Van Vliet, 2010).The Sanger sequencing method is popularly known as first generation of
sequencing technique and is the most popular
choicefor sequencing genomes since last four
decades (Voelkerding et a., 2009). In early

90's (1990) the production of DNA Seqlfe;leg

sequences was commonly done with ot
semi-automated implementations of the

Sanger biochemistry which is also a capillary . ;

based method (Sanger et al., 1977) Obeiime | Strategies for Micro-
The various strategies for sequencing of DNA Single DHa e
can be clustered into four categories ikl S

(Shendure and Ji, 2008), as shown in Fig. 1.

The NGS is the result of implementations of _

cyclic-array sequencing, which has been %;ﬁ;fc’;g

found to have extensve commercia (NGS)

applications.

Fig.1 Strategies for DNA sequencing
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1.1 The conventional sequencing technology: Sanger sequencing

The key steps involved in genomic sequencing by Sanger sequencing method are (Shendure et al.,

2005),

e Isolation of target DNA from samples.

e  Amplification of interested region in DNA.

e  “Cyclesequencing” reactions to generate sequencing product.

e  Purifying reactions by removing fluorescent ddNTP, previously used in the sequencing
procedure.

e Capillary electrophoresis of resultant products from sequencing after injecting into
capillaries filled with polymer to determine sequence by high resolution electrophoretic
separation.

Trandation of raw data generated into electropherograms usesvarious software tools.

1.2. Advent of NGS Technology

According to International Human Genome Sequencing Consortium 2004 (IHGSC, 2004),the
Sanger method has been the gold standard for DNA sequencing for the past 30 years.Sanger
sequencing technique was later used in sequencing human genome in 2004.The contributors of
Human Genome Project for first human genome sequencing had large sequencing facilities holding
capillary sequencers and were supported by complex robotics and infrastructure. Despite this, it
still was not well-suited to studying variations as it was merely the scaled-up version of simple
Sanger sequencing (Sanger et a., 1977) which came into existence just 25 years beforehand
(Kilpinen and Barrett, 2013).

The Human Genome Project (Lander et al., 2001) was time-consuming and required more set of
advanced resources. This resulted in immediate need of faster, cheaper higher throughput
technologies. Therefore, in same year (2004) the National Human Genome Research Institute
(NHGRI) set funds for research aiming to reduce the time and cost of human genome sequencing to
US$1000 in ten years (Schloss, 2008). The very first pyrosequencing platform that could perform
massively paralel sequencing was launched in 2005 which initiated the dawn of new high
throughput era of sequencing called next-generation sequencing (NGS) (Margulies et al., 2005;
Shendure et al., 2005).

The next generation sequencing (NGS) is revolutionary technology which has a great positive
impact on field of genomics which generates fast, economical, high resolution and accurate
genome-scale sequence data with exquisite resolution and accuracy. It has accelerated the
sequencing rate to several hundredsgbs of nucleotide sequence per instrument run, while reducing
sequencing cost by over five orders of magnitude (Xuan et al., 2013).Since the starting in 2008,
NGS platforms have reduced the cost of sequencing DNA by more than 50 000 folds of initial
costing, thus making sequencing economical. (http://www.genome.gov/sequencingcosts/)

1.3. NGS advantage over Sanger sequencing technology
The First Generation Sequencing had some shortcomings which were later improvised end
lead to development and commercialization of NGS technologies (Van Vliet, 2010).These
improvements over Sanger sequencing method (First Generation sequencing methods) are:

e  NGSlibrary preparation unlike bacterial cloning of DNA fragments asin first generation.
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e Millions of sequencing reactions can be produced parallel rather than few hundred asin Sanger
technique.

e The result from NGS sequencing can be directly detected without the need for separate
electrophoresis; base interrogation as is performed cyclically and in parallel (Van Vliet, 2010).

e Thus global advantages of second-generation (cyclic-array strategies) or NGS techniques over
Sanger sequencing are (Shendure and Ji, 2008)-

e Thein vitro construction of a sequencing library followed by in vitro clonal amplification for
sequencing in NGS technology eradicates the disadvantage Sanger sequencing
(ietransformation of E. coli and colony picking).

o Array-based sequencing (NGS) has high degree of parallelism than conventional
capillary-based sequencing (Sanger sequencing).

o Array features of NGS are immobilized to a planar surface which is advantageous because it
can be enzymatically manipulated by a single reagent volume. Thisin turn lowers the costs for
generation of DNA sequence.

e Theresolution of NGS can be tuned according to the experimental needs.

e The natural competition among bases while synthesis minimizes incorporation bias leading to
elimination of errors and missed calls related to homopolymers.

1.4. Limitations of microarray which paved path for NGS development:

e Hybridization techniques such as Microarray technology have short range for detecting
transcript levels due to background noises, saturation and spot density (Van Vliet, 2010).

e Comparison of transcription levels in between microarray experiments is challenging and
reguires complex normalization methods (Hinton et a., 2004).

e Microarray technology merely measures the relative level of RNA expression so we can't
distinguish between de novo synthesized transcripts and modified transcripts. Moreover, it
cannot determine the promoter used for de novo transcription accurately (Van Vliet, 2010).

Majority of these issues can be overcome using high-throughput sequencing of cDNA libraries
(AC't Hoenet al., 2008) and coupling microarrays and cDNA sequencing can efficiently generate
data on full microbia transcriptomes synergistically (Van Vliet, 2010).The studies of gene
expression have been switched from microarrays to NGS-based methods, enabling identification
and quantification of transcripts regardiess of any prior knowledge of genes. Also, provides
information relating to sequence variation,alternative splicing and so on (Wang et al., 2009).

1.5. NGS Platforms

The 454 sequencing technology is used in the 454 Genome Sequencers and Roche Applied
Science; Solexa technology is used in the Illumina Genome Analyzer; SOLID platform is
extensively used by Applied Biosystem and the HeliScope Single Molecule Sequencer
technology is used in Helicos (Shendure and Ji, 2008).
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1.6. Working  Principle of NGS

(Hlumina) —

[lumina NGS platform relies on sequencing by Genomicor (ONA

synthesis (SBS) technology which tracks down

the attachment of fluorescent labeled = _ , =

nucleotides while copying DNA chain in [mm:'m__. m;m]

parallel. The Fig. 2(Grada andWeinbrecht, }m,,m,_w\
=..--—-..-—»*' e —»'H|l..':

shorter fragments (read length of 100-150bp),
sequencing machinery used. The longer
fragments arefirstly ligated to specific adaptors
which enable them to annea the dide later. Emulsion PCR Cluster generation

2013) represents the stepsinvolved in NGS data
generation. Theraw input sampleiscleaved into

DA amplifi

Qoxl: Template preparation

Then the PCRis carried out to amplify each read o

separately, creating a spot with several copies of S w lv l

same read. Then separation of each strand to be 5®

sequenced is done. The dlide is flooded with b E P

DNA polymerase, fluorescently labeled 'g & —————
o MiSeq

nucleotides with the colour corresponding to the
specific base and aterminator ensuring addition
of one base at a time. The output data from
Illumina sequencing systemscan range from
300 kilo-base up to 1 tb from a single
sequencing run, depending on instrument type
and its configuration.
(http://www.illumina.com/technol ogy/next-gen
eration-sequencing.html )

ATAGTCAGCTG

Box 3: Data Analysis

Fig.2 Steps involved in NGS data generation. BOX 1) Template preparation in which
genomic or cDNA is used to generate library by fragmenting, ligating to specific adapters
and at last amplifying it. Box 2) Next step is sequencing the fragments and imaging.
Box 3)Data analysis and interpretation

1.7. NGS as Sub-field for Bioinformatics
There are different types of NGS approaches currently in practice, some of which can be
enumerated as (Raza and Ahmad, 2016; Voelkerding e a.,  2009;
http://www.illumina.com/technol ogy/next-generation-sequencing.html):
e Targeted sequencing.
RNA sequencing
M etagenomic sequencing
Transcriptome sequencing
Paired-end sequencing
Whol e-exome sequencing
bisulfite-treated DNA sequencing

ChiP-Seq
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¢ Nuclease fragmentation and sequencing

e Molecular barcoding
The NGS technology isnew in trend and development in thisfield is being done gradually. Several
software tools are under development and NGS data analysis tools are available as open source.
Functions of these tools are concerned majorly in subfields as shown in Fig. 3 (Zhang et al., 2011).
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Fig. 3 Various NGS subfields concerned for development of bioinformatics tools

2. Promises in Disease Studies

The NGS has proven to be easy and inexpensive high throughput technique for profiling gene

expression and genome annotation. It is found to be useful in area of genomic, transcriptomic,

regulomic, metagenomic, epigenomic and diagnostic research (Mutz et a., 2013). It also supports
the research in field of agrigenomics, and forensic science (Van Vliet, 2010). It is aso
advantageousin clinical diagnostics and other aspects of diseases, medicines and drugslike disease

risk assessment, therapeutic identification, and prenatal testing (Koboldt et al., 2013).

NGS has already been used in field of diagnostics and forensic studies which resulted in generation

of high-throughput data. They successfully answered some questions which were overlooked by

Sanger sequencing (Weber-Lehmann et al., 2014).

Several science projects have been benefited from the low cost and high throughput of NGS. Two

of the most popular examples regarding this are stated as following.

e HapMap Project: The international collaborative project called HapMap Project
(International HapMap Consortium, 2005). Wasintroduced Genome Wide Association Studies
(GWAS)era by studying common SNPs inthe human genome in detail. This
informationenabled researchers to design arrays of several SNPs that were able to successfully
capture nearly all the commonvariationin European populations (Barrett et al., 2006).
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e 1000 Genomes Project: The data from 1000Genomes pilot project (1000 Genomes Project
Consortium, 2010) from 179 samples have been exclusively utilized in the study of complex
diseases. This is done either by improving imputationreference sets or by designing of
next-generation genotypingarrays. The 1000 genome project reduced the cost of sequencing
an individual genome upto ~$1,000 per person (von Bubnoff, 2008) which showed the way
towards personalized medicine (Mardis, 2006; Lunshof et al., 2010).

e Study of Mendelian diseases: NGS has been utilized in studying mendelian disease in an
affected family by searching for the causes of mutation. For this linkage analysis was done,
followed by fine-mapping and then Sanger sequencing of positional candidate genes. Exome
sequencing is successful to such diseases most of the causal alleles disrupt protein-coding
(exonic) sequences (Stenson et al., 2009).

o ENCODE project: NGS enabled us to get genome-wide annotation of functional sites in
mouse and human which gave us information regarding regulatory sequences of their
genomes. (ENCODE Project Consortium, 2004).

o Human Microbiome Project: NGS characterized diversity and types of bacteria and viruses
dwelling within human body of several healthy individuals. Thus it defined the baseline for
microbial health of human and any changes in their population signifies the marker of disease,
etc (Peterson et al., 2009).

The RNA-Seq data obtained from NGS platforms could help researchers interpreting the

“personalized transcriptome” that would help in understanding the changes occurring in human

transcriptome. This detection could enable identifying key genes for adisease. But this approachis

sensitive to time and money (Mardis, 2006; Lunshof et al., 2010).

The completion of human genome sequencing and thus availability of dataset, the use of NGS in

studying diseases and variations discoveries has become easy and almost intellectually effortless

(Kilpinen and Barrett, 2013).

The NGS provides coverage of large genomic regions of interest which can be successfully laid to

develop a precise and strong therapeutic workflow for both germline and somatic cancers (Grada

andWeinbrecht, 2013).

Areas to be looked for disease research can be categorized into following (Xuan et al., 2013), as

shown in Fig. 4.

Regulatory Networks

Biomarker discovery

Diagnostics

Personalized medicine

Phylogenetic traits

Cancer Genomics

Microbial Genomics

Agriculture and Animal research
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Fig.4 Applications of NGS in disease study.

Some of the applications of NGS in disease study are (Mutz et al., 2013; Mardis, 2008; Grada and

Weinbrecht, 2013):

o Detecting the genetic mutations and role of gene involved in diseases such as cancer and other
pathological conditions.

e Discovery of noncoding RNA (ncRNA) and miRNAs responsible for the development of drug
resistance.

o Detecting and quantifying the low frequency variants like rare drug-resistant viral mutations as

in case of HIV, hepatitis B virus, or microbial pathogens that are involved in phenotypic traits

and diseases.

Identifying key genes responsible for skin diseases.

RNA identification of drug-related genes and genes for fusion proteinsin Cancer.

Quantifying RNA expression levels.

It can be used in examining epigenetic modifications on a genomic scale which playsimportant

rolein cellular processes (gene regulation, disease mechanisms, and oncogenetic development,

etc.).

o |dentifying undiscovered, novel virulence factors through sequencing the bacterial and vira
genomes.

Some of the other area of applications of NGS (Mutz et al., 2013; Zainab et al., 2015) are:

e denovo sequencing (specially eukaryotic genomes)
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Identification of Single Nucleotide Polymorphisms (SNPs), small insertions/deletions (indels),
copy humber variations (CNV's) and other structural variations.

Analyzes gene regulation events (DNA—protein interactions, transcription factor bindings,
nucleosome positioning, etc.)

Gene expression profiling (e.g. differentially expressed genes identification)

Discovery of novel small RNAs, sPiwi-interacting RNAs (piRNAsS) by ncRNA and small
RNA profiling studies.

Study microbial diversity in humans or in the environment.

Analysis of genome-wide methylation.

Protein-nucleic acid interaction analysis by ChlP-Seq.

Moreover, in last few years NGS-based methods were widely used for genome analysis to
discover new mutations and fusion transcriptsin cancer.

The perception regarding several genes by medical profession and researches are continually
changed along with evolving gene sequencing on account of variations in human genome.
Likewise, the development in NGS also increases the versatility of genomics field (Mardis,
2008).

Challenges

Itisquiet cheaper than first generation sequencing approaches in terms of time and money but still
it is too expensive for many labs having startup cost of ~$100,000 and individual sequencing
reactions of ~$1,000 per genome (Zhang et a., 2011; Xuan et al., 2013).

Large dataset from NGS can implicate storage problem (Van Vliet, 2010).

Data analysis of vast high throughput data can be time-consuming.

Data analysis (analysis, interpretation and visualization) for result from NGS may require
specia and accurate bioinformatics analytical skill (Zhang et al., 2011).

Moreover, the Microarrays measure a response in terms of a position on a spectrum,
whereas cDNA sequencing in terms of scores (number of hits) for each transcript thus is
census-based method (Van Vliet, 2010). This census-based method used in sequencing
raises complex statistical issues in data anaysis (Jiang and Wong, 2009; Oshlack and
Wakefield, 2009).

Difference in data formats, read lengths, etc. among different NGS platforms results in need
of development of bioinformatics tools for management and interpretation of NGS data.
Guidelines for minimal requirements for online publication of NGS datasets (genomics and
proteomics) is needed to be setup, similar to MIAME guidelines (Brazma et al., 2001) for
microarray datasets (Van Vliet, 2010).

Read-lengths are much shorter for al currently available NGS platforms (Van Vliet, 2010).
The base-calls generated by new platforms are ten-times less accurate than those by Sanger
seguencing.

cDNA sequence should be accurately predetermined and poor quality sequence should be
removed, enabling correct mapping onto Genome (Van Vliet, 2010).

Sequence errors due to inaccurately sequencing of homopolymeric regions (repeating
nucleotides) occur on certain NGS platforms (lon Torrent PGM) and short read length data
are generated (Grada andWeinbrecht, 2013).
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e The cDNA library construction reguires amplification of cDNA, therefore, risk of
over-representation of shorter transcripts can lead to unstable result.

These limitations create important algorithmic challenges for the future research perspective and

paves path of these technologiesto upgrade its specifications and versatility. It isreally appreciable

that the technical performance of sequencing technologies has progressed to this current level

gradually over last three decades.

The NGS technology isnew in trend and development in thisfield is being done gradually. Several

software tools are under development and many are available online for NGS data analysis.

Functions of these tools are concerned majorly in subfields like (Fig. 5) (Zhang et al., 2011):

read alignment to a reference sequence;

de novo assembly;

reference-based assembly;

base-calling or genetic variation detection (such as SNV, Indel);

genome annotation, & functional prediction (Functional variant prediction, Variant

detection(Structural/genomic variant& Single nucleotide variant), Differences between

genomes)

e dataanaysis utilities

e diagnostics/utilities

Base-callin Sefome
P g { annotation
de-novo Functional
assembly prediction
Reference
based Data analysis
assembly | - W l
)/./’ \"-\
y \.\

o . / : -

I' Read Subfields for ‘ '
ea ‘ . .
| alignment ‘ bioinformatical Diagnostics

N

Fig. 5 Various NGS subfields concerned for development of bioinformatical tools.

Advent of Third Generation Sequencing “Nanopore Sequencing”: Since NGS enabled

completion of whole genome sequencing and revealed the depth of genomes but on the other sideiit

also laid wide range of new questions and some questions were made more difficult to answer.

o Weareabletoidentify correlated variants associated to disease successfully through NGS but
how can we further identify its causal aleles and their effect in depth?

e How can we find association between rare aleles with moderate effect, when their confirm
association needs impossibly large sample sizes with statistical significance?
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o |ntegration of genomic function, including sequence, epigenetic state, chromatin structure, and

conformation in the nucleus to understand phenotypic effectsis still challenging?
These unexplored issues might be looked by ‘third-generation’ technologies, such as
‘Nanopore-based technologies (Manrao et al., 2012), which can sequence least amount of DNA
(even single molecules). In this method a small DNA molecul e passes by asmall pore and resulting
into electric current or optical signal as aread sequence (Clarke et al., 2009). Nanopore technology
is considered as third-generation technology because it enables the sequencing of few molecules
even asingle moleculesin real time (Van Vliet, 2010).

4. Conclusion

NGS is a seguencing technology that performs high throughput paralel seguencing
simultaneoudly. In this high-throughput technology several DNA fragments gets seguenced
simultaneously. Thus entire genome gets sequenced in less than a day. The NGS has been a boon
for researchers who keep keen interest in studying biological systems and disease.The advent of
NGS hasfueled arevolution in biological research. Its promises are accessibility for whole genome
sequencing in less duration of time ,limitless dynamic range of expression profiling, allowsto tune
thelevel of dataresolution to meet specific experimental needs, thusishighly scalable, giveslarge
extent of information as possible about the ‘transcriptome’ representing complete collection of
transcribed sequencesin acell, separates different classes of RNA speciesinto de novo synthesized
RNA (primary transcripts) and post-transcriptionally modified (secondary) transcripts, used in
sequencing of the human genome and, the Hap-Map project that have helped in studying human
disease and resequences many ‘norma’ human genomes to efficiently capture the spectrum of
variability to establish an important baseline for complex disease studies.

In effect, the sequencing of a human genome can now be completed within 2 weeks and the cost of
datageneration will be~$5,000 (Ku et a., 2013).The conventional sequencing (Sanger sequencing)
is still the most choice for small-scale projects in future because of its' sequencing granularity’ but
still large projects will depend on NGS.NGS successfully leads to accesswhol e genome sequencing
in less duration of time and has limitless dynamic range of expression profiling. Moreover, it is
highly scalable.NGS has proven to be easy and inexpensive technique for gene expression profiling
and genome annotation. High throughput sequencing is found to be useful in the area of genomic,
transcriptomic, metagenomic, epigenomic and diagnostic research. But it ill face some
challenges, like problems for data storage, data analysis requires highly skilled professionals,
requires platform specific bioinformaticstools,etc. Moreover, sequencing errors occur for
homopolymeric regions. These limitations of NGS create important algorithmic challenges for the
future research provides foundation for improvements and removing the causatives which hinders
its technical parameters.Taken together, the continuing trends in data-generation facility and cost
reduction in NGS platforms will probably contribute, over the long term, to increasing our
genome-wide knowledge of organisms,organism systems, and overall provide deeper insight of
disease mechanism.
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1. Introduction

The concept of intuitionistic fuzzy setswas introduced by K.T. Atanassov [1, 2] asagenerdization
of the notion of fuzzy setsin [13] and it is a very effective tool to study the case of vagueness.
Further many researches applied this notion in various branches of mathematics especidly in
algebra and defined intuitionistic fuzzy subgroups, intuitionistic fuzzy subrings, and intuitionistic
fuzzy sublattices, intuitionistic fuzzy submodules and so forth, for example see ([3], [5-6], [9-12] ).
Lambek [7] described the notion of free module, projective and injective module and presented
some interesting results. The idea of fuzzy free module and their basis was given by Muganda [8].
Zedehi and Amari [14] introduced the notion of fuzzy projectivity and fuzzy injectivity and
discussed many resullts.

In this paper we will define the notion of intuitionistic fuzzy free, projective and injective
submodule of a module and discuss some of their properties.

2. Preliminaries

In this section we recall some definitions and results which will be used later

Definition 2.1.[1] Let X be afixed non-empty set. An intuitionistic fuzzy set (IFS) A of X isan
object of the following form A ={ <x, pa(X) , va(x) > : xeX}, wherepa: X 21 and va: X 21
define the degree of membership and degree of non-membership of the element xe X respectively
and for any x eX, wehave 0 <pa(X) + va(X) <1, wherel =[0,1].

Remark 2.2. [2,10](i): When pa(X) + va(x) = 1, i.e., when va(X) =1 - pa(X) = pa(X). Then A is
called afuzzy set.

(il) Wewrite A = (ua ,va) to denotethe IFS A = { <x, pa(X), va(x) >: xeX}.

(iii) An IFS A = (ua ,va) can aso be represented by amapping (ua, va) : X 2 I x 1.

Definition 2.3. [6 , 8] Let M be a modules over aring R. An IFS A = (ua ,va) Of M is called
intuitionistic fuzzy (left) submodule (IFSM) if

) mO=1, va0=0;

(if) pa(X +y) 2 min{ pa(X) , pa(y)} and  va(x +y) <max {va(x) , va(y)}, VX, ye M;

(iii) pa(rx) =pa(x) and  va(rx) <va(x), Vxe M, reR.
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If we replace the condition (iii) with pa(xr) >ua(X) and va(xr) <va(x), Vxe M, r €R, it is called
intuitionistic fuzzy (right) module. When R is a commutative ring, then these two modules
coincides. From this onward, R will be acommutative ring with unity.

Definition 2.4. [10] Let A = (pa, va )bean IFSof aset X and if Y < X, then the restriction of the

IFS A to the set Y is denoted by Al =(u, vy ) ad is defined as
Hy, (X) = p5(x) and Va, (X)=v,\(X) V xeY.

Definition 2.5. Let A = (ua ,va) and B = (ug, vg) betwo IFSMs of the module M and N over R
respectively. A function f: M - Nissaidto beafunction from A toB

M f >N

(e, vay (s, vB)
IxI
if pBOf:p.AandeOf = Va.
Further if f is a module homomorphism, then f is said to be a homomorphism from A to B. In this
case, we say that A is homomorphic to B. Similarly, if fis a module epimorphi-sm,
monomorphism or isomorphism satisfying the above conditions, then we say that f is an
epimorphism, monomorphism or isomorphism respectively from A to B.

Definition 2.6. [7] Thedirect product M :1‘[|\/|i of afamily of modules{ M;| ie J} overaring
iel
R, is the Cartesian product with operations defined component wise. Thus if meM, then
m:J —>UMi with m(i) e M, for al ieJ. The external direct sum :ZMi of afamily of
iel ied
modules{ M;| ie J} over aring R consist of m :Zm(i) , where m(i) =0 for al but finite
ied

many ieJ.

Definition 2.7. [ 7 ] If M :1_[|\/|i , then the canonical epimorphism p; : M >M;, and the
ied

canonical monomorphism k; : M;> M aredefinedas p(m) =m(i) and

i m ;if j=i

k (m(j)) ={ R
0 ;if j=i

Clearly, pjok; =1 (identity map)
Proposition 2.8. [7 ] If M isadirect sum of afamily of modules{ M; | ie J} with canonica
monomorphism k; : M;=> M, then for every module N and for every family of homomorphism
{0i: Mj> N | ie J thereexists aunique homomorphism ¢ : M = N such that ¢ o k; = ¢, for al
ied
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K
M, —>M = EM,

N
Proposition 2.9. [7 ] If M isadirect product of afamily of modules{ M; | ie J}.If foreachie
J, pi: M >M;, be the canonical epimorphism, then for every module N and for every family of
homomorphism{¢; : N>M; | ie J} thereexistsaunique homomorphism ¢ : M -> N such that
pi 0 o= ¢, foral ie J.

M=IT M

N 5 > M.

Definition 2.10. Let M be amodule over R which isadirect product of afamily of modules{M; |
ic JJover RLet A;=(uai, vapbelFSMsof M;. Wedefinean IFS A = (ua, va) of M by
Uy(m) = Inf{yﬁ\(m(i)) | ied} and v,(m) :Sup{v,* (m@i) | ied},vm :Hm(i) eM.

iel
Then A isan IFSM of M. We say thisIFSM A asthe direct product of the [IFSMs A; and in this case
we write A=TTA.

iel

Next, let M be the direct sum of the family {M;| ie J}. If we define
up(m) =min{z, (m(@i)) | i€ I} and v,(m) =max{v, (m(i)) | ieI},Vm= Zm(i) e M.
iel
[Notethat m (i) = O for all but infinite many i]. Then A isan IFSM of M. We say thisIFSM A asthe
direct sum of the IFSMs A; and in this case wewrite A= z A.
iel
Definition 2.11. Let A= H Aor A= Z A, where A = (ua ,va) and A; = (uai , vai) arelFSMson
iel iel
M and M; respectively. Then we say the canonical epimorphism p; from M to M; as the canonical
epimorphism from A to A if p,0p;=u, and v,0p, =v,. Smilaly, we say the
canonical monomorphism k; from M; to M as the canonical monomorphism from A; to A if
HpO k=, and v,0k; =v,.

3. Intuitionistic fuzzy projective submodules

Definition 3.1. Let Sbeasubset of amodule M over aring R and let A = (ua ,va) bean IFSM of M.
Let B bean IFS of Ssuchthat B < Als. Then B issaid to belinearly independent (L.1.) in A if

(i) SisL.l subset of M;
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S;, where rieR, s€S (i = 1,2,...,, K) is an irredundant

k
(i) For any xe M, if x= Zri
i=1

representation of X, then

Ha(X)=min{ug(s;) | i=12,.....k} and v,(X)=max{vy(s,))| i=12,.....k}.

Note 3.2.If BisL.IinA,thenB=AonS.

Example 3.3. Let M = R? be avector space over R. Let A = (ua ,va) be an IFSM of M defined by
1 if x=0 0 if x=0

/'IA(X)Z{

) and v,(x)= . , VXe M.
05 if x%0 0.2 if x#0

Let S={ By, B2} beasubset of M, where B, , o are L.I. elementsof M. Let BbeanIFSon S,

defined by
=1t XS iy VxeM
= ]/ = y
#e 05 if x¢S # 02 if xg$S <

Clearly, Bc Als. Let 0=x =rf1+ 1,3, , be an irredundant representation, then

pa(X) =min{ 115 (B)), 115(B,)} =0.5/10.5=05 and v,(x) =max{vy(B), vs(5)} =1v1=L1.

Therefore, B isan linearly independent in A.
Example 3.4. Let M ={ (a, a) | a € R} beavector subspace of R?over R. Let A = (ua ,va) bean
IFSM of M defined by

(%) 1 if x=0 q (x) x e M
V=05 if x#0 27002 i x#0
Let S={ B.} beasubset of M, where 3; isanon-zero element of M. Let B betheintuitionistic fuzzy
characteristic functionon S, i.e.,
0 if xeS

1 if xeS
,uB(x)z{ TXES and vls(x)z{ LV xeM

0 if xeS

0 if x=0

O if xgS 1if xeS

Clearly, Bc Als. Let (1,1) = ry; be an irredundant representation of (1,1), then

1, (L1 = 5 (B)=0%05 and v,(1L1) =v,(B,)=1=0.2.

Therefore, B isnot linearly independent in A.

Definition 3.5. Let A bean IFSM of amodule M over aring R, Sheasubsetof MandB  anIFS
on S such that B < Als. Then B is said to be a basis for A if Sis abasis of M, B is linearly
independentin A and<B>=A, i.e, Aisthesmalest|FSM of M suchthatB c Als.

Definition 3.6. Let A bean IFSM of amodule M over aring R. Then A issaid to befreeif A hasa
basis, i.e., there exists a basis S of M and an IFS B of S such that B < Als and B is linearly
independent suchthat <B > =A.

Remark 3.7. AnIFSM A of amodule M over aring R may or may not be free

For example: AnIFSM A asin example (3.3) isfreeasBisL.l.in A and A =<B >, whereasan
IFSM A asin example (3.4) isnot free, for <B >z A.

Definition 3.8. Let N and P be any two modules over aring R andlet A be an IFSM of M over R.
Then A issaid to beintuitionistic fuzzy projective ( IF projective) submoduleif for any IFSMsB of
N, C of P, any epimorphism p from C to B and homomorphism ¢ from A to B, there exists a
homomorphism y from A to C suchthat po vy = ¢.
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-

A N

e

C
LA
-
-
o J:
B
¢

In short the above diagram is commutative.
Theorem 3.9. Every intuitionistic fuzzy free submodule of a module is IF projective.
Proof. Let A=(ua, va) bean intuitionistic fuzzy free submodule of amodule M over aring R. Let
{ m | e I} be a basis of M. Let N and P be any two modules over R.
Let B=(ug,ve),C=(uc, vc) betwo IFSM of N and P respectively. Let p be an epimorphism from
C to B and ¢ be a homomorphism from A to B. Now for any ie J, there exists bje P such that ¢
(my) = p(by). Thus, for any m =Zrimi e M, we define y : M > P by y(m) =y( zrimi) =
ied ied
>'rb, Thenitis easy to check that v is a homomorphism.
iel
Also, (poy )(m) = p(y(m))= p(zf.b.J— 2. npb) = rg(m) = (rm) —¢(Zﬁm.) =g(m).
ied ied ied ied ied
Hence poy = ¢.Finally, we show that y is a homomorphism from A to C, for this we have
H Oy = (ﬂBOP)OV/ = :uBO( pOl//) = (504 = p1,. Similarly, we get v.oy =v,.
Therefore y is ahomomorphism from A to C such that p o y=¢. Hence A isIF projective.
Theorem 3.10. Let M be the direct sum of the modules {M;| i € J} over a ring R. Let A be an IFSM
of M and A; be that of M; forallie J. Let A= z A Then Ais IF projective if and only if each A;
ied
is IF projective.
Proof. Let A = (ua ,va) and A; = (uaj , vaj) be IFSMson M and M; respectively for al i J. and
letk; : Ai=> A bethe canonical monomorphism. First we assume that each A;is IF projective. Let N
and P be two modulesover R and let B = (ug ,vg) , C = (uc , vo) beIFSMsof N and P respectively.
Let p: C —> B bean epimormorhism, k; : M;=> M be canonical injection and ¢ : A > Bbea
homomorphism. Then

((ﬂ50¢)0ki)(mi) = (/’lAOki)(mi) =y (M), VM eM,.
Therefore, (14,00)0k; = 1, i.€, 150(pok;) = 11, . Similarly, we can get v,0(gok;) =v, .

Thus, ¢ o k; is a homomorphism from A; to B. Since A; is IF projective, so there exists a
homomorphism ; : Ai=> C such that poy; = ¢ ok;.

C
-
wi -
4"— p
f,"
AS S A S B
Kk o 4

JIMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 62-69



On Intuitionistic Fuzzy Projective And Injective Modules 67

By proposition (2.8), there exists aunique homomorphismy : M > P such that y o k; = ;, for all
ieJ.Since powyoki=powy=¢o0k;,sobyuniqueness of ki, weget poy =¢.Finaly, wehaveto
show that v is a homomorphism from A to C. For this we have
Hc Oy = (150P) 0y = 1z0( POy ) = 11504 = p1,. Similarly, we can get 4.0y =v,.
Thus v is ahomomorphism fromA to C suchthat p oy = ¢. Hence A is|F projective.

Conversely, let A be IF projective. Let ¢; : Ai> B be a homomorphismand p: C > B bean
epimorphism. Let p: C > A; be the canonicd epimorphism. Now,

150(40p; ) = (1504, ) 0P, = w1, O p; = . Similarly, we can get v,0(40p;) =V,.
This shows that¢ﬁ\,0pi is a homomorphism from A to B. Since A is |F projective, so there exists a
homomorphismy : A - Csuchthat powy = @0p,. Butp; ok; =1 (identitymapping) and sop o
yok; = ¢ﬁ\,0pi0ki =¢;. Lety ok =y, theny;: M;=> Pisahomomorphism. Also,

H#e oy, = 10y ok;) = (ucop) ok, = u,0k; = u, . Similarly, we can get vcoy, =v, .
Therefore, y;isahomomorphismfromAtoC. Also, p owyok; = ¢ii mpliesp o y; = ¢; hence A; is
IF projective.

Lemma 3.11. Let A module M over aring Risthedirect product of afamily of modules{M; | ie J}

over R, A be an IFSM of M and A; be that of M;. Let A:HA and p; : A > A, be the canonical

ied
epimorphism. Then for every IFSM B of any module N over R and for every family of
homomorphism ¢; : B > A, there exists aunique homomorphism ¢ : B > A suchthat p; 0 ¢ = ¢

Proof. Let A = (ua ,va) and A; = (uai , va)) be IFSMson M and M; respectively for al ieJ. We
recall that for any meM, pi(m) = m(i)e M,. Define ¢ : N > M such that for each ieJ, we
haveh(n)(i) = ¢i(n), YneN. Thenit is easy to check that ¢ is a homomorphism. Also (p; 0 $)(n) =
pi(¢(n)) = ¢(n)(i) = ¢i(n) andthus pio¢ = ¢:. Finally,

Hp0p = (/UA, op;)0¢ = Hp o(p;0¢) = p5. Similarly, we can get v,04 = v,.

A=ITA:

B— oA
Therefore,g:B > A suchthat p;od=¢;. Again,if v :B > A isanother homomorphism such that
piowy =i, then  (w(n)(i) = pi(w() = (B 0 w)(N) = ¢i(n) = (6(n))(i) and soy = ¢. Hence ¢ is
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unique.

Definition 3.12. Let N and P be any two modules over aring R and A be an IFSM of amodule M
over R. Then A is said to be an intuitionistic fuzzy injective (IF injective) submodule if for any
IFSM B of N, C of P, and momorphism k from B to C and homomorphism ¢ from B to A, there
exists a homomorphism y from C to A such that y o k = ¢.

B s > <
N

Theorem 3.13. Let M bethe direct product of the modules{M; |ie J} overaringR. Let A bean
IFSM of M and A; be that of M; for all ie J. Let A=HA . Then A islFinjectiveif and only if

i€l

each A; islIFinjective.

Proof. Let A = (ua ,va) and A; = (uai , va)) be IFSMson M and M; respectively forall ie J. Let p
:A > A, bethe canonical epimorphism.

First let each A; be IF injective. SupposeN and P be any two modules over R and B and C be IFSM
of N and Prespectively. Letk: B > C be amonomorphismand ¢ : B > A be ahomomorphism. Now
piod: N > M; is ahomomorphism such that

/UAlo( p; 0g) = (,UA 0p;)0¢ = 1, 0¢ = . Similarly, we can get VAIO(pi 0¢) = V.
Therefore, p; 0 ¢ is a homomorphism from B to A;. Since A; is IF injective , there exists a
homomorphism y;: C > A;suchthat y;ok=p0¢. Also, by proposition (2.8), there existsa

unique homomorphism  : C > A such that p; 0 v = ;. Now,yiok=podo= (powy)o
k=piod= pio(y ok)=pjo¢andusing the uniquenessof p; , weget v ok =¢.
k
B—>3C

A=TIA; p—*'> A

Finally, we have

/UA()W:(/U/.\1 Opi)Ol//:/uA‘ O(piOV/)=ﬂA‘ oy; = fe. Similarly, we can get v, oy =v,.
Therefore, w : C 2> A is a homomorphism such that y o k = ¢. Hence A is IF injective.
Conversely, let A be IF injective. Let k : B > C be a monomorphism, ¢; : B > A; a
homomorphism, p; : M >M; the canonical epimorphism and k; : M;> M the canonical
monomorphism. Then k; o ¢ : N - M isahomomorphism. Also,

tn (ki 06) = (1, Ok;) O = g1, 04 = 15 Similarly, we can get v, o(k; 0¢) = vs.
Therefore, k; o ¢iis a homomorphism from B to A. Since A is IF injective so there exists a
homomorphismy : C > A suchthat w ok =k; 0 ¢.
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Lete p o wv = vy, then wy: P  ->M; is a homomorphism. Also,
Hy, O, = p, O(POY) = (14, OP;) Oy = 11, O = . Similarly, wecan get v, oy, =ve.
Therefore, y; isahomomorphismfrom Cto A;. Also, yiok=(poy)ok=p;0o(yok)=p o(k
od)=(poki)od=10d¢ =¢.Hence AislFinjective.
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