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Hybrid and Projective Synchronization of Multi-Scale 
Cancer-Invasion Model 
 
Ayub Khan & Arti Tyagi 
 
Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India, akhan12@jmi.ac.in   
Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India, artityagi28@gmail.com 
 
Abstract: The Active Control method has been employed to discuss the hybrid and projective synchronization between the 
two identical chaotic systems of the Tumor growth models. During the investigations analytic and computational techniques 
have been used. For different values of growth parameters hybrid synchronization and projective synchronization between 
the considered systems have been achieved. Most significantly the analytic and computational results are in an excellent 
agreement. This manuscript provides significant mathematical description to devise the sophisticated experimental 
mechanism for the treatment of tumor growth. 

 
1. Introduction 
Cancer is now becoming the leading cause of death around the world but our overall knowledge of 
its causes, methods of prevention and cure is still in its infancy. One strongest tool that has shown 
its potential in our better understanding of such a complicated biological systems is mathematical 
modeling [1],[2]-[5]. Mathematical models provide realistic and quantitative representations of 
important biological phenomena and biological interpretations of the results can give insight to 
make realistic predictions of the state of disease under different conditions [6]. The idea of using 
mathematical models for cancer was introduced in 1955 by Thomlinson and Gray(1955). After that, 
many mathematical models for tumor growth have been developed and the application of these 
models has been increased recently [7]-[11]. What makes mathematical models of tumor growth 
interesting is that they can be simple but indeed still indicate the complicated interactions 
involved[12]. The tumor growth dynamics and the anti tumor immune response dynamics in vivo 
are very complex[13] and not well understood mainly because in most of states, the measurements 
are impossible in vivo. Models are not only able to explain many phenomena observed in vivo,but 
they could also provide a good insight about the phenomena that are unobservable in vivo. Major 
causes of the complexity in the tumor systems are the diversity of levels of the tumor system(gene, 
molecular, cellular, tissue, organ, body and population), different time scales of each level, 
self-organization of the system, multitude of signaling path ways and tumor-immune and 
tumor-environment interactions [14]-[17]. This complexity can lead to an emergence of different 
types of attractors(fixed point, limit cycle,and even strange attractors)[18]-[20]. In fact,one can also 
experimentally demonstrate the existence of these limit cycles and strange attractors as a result of 
the complex dynamics of the tumor system [21], [22]. These strange behaviors of tumors can be 
addressed based on the inherent properties of chaos such as sensitive dependence on initial 
conditions[23]. Sensitive dependence on initial conditions makes the tumor growth patterns case 
specific, i.e.evolution of cancer for any patient is different from another patient, due to the different 
initial conditions for any individual. While this is a challenging issue for the oncologists, this is a 
very interesting topic in the field of tumor modeling. For these reasons, chaos theory could allow a 
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better understanding of this complex system [24]-[27]. 
Due to chaotic nature of tumor growth model, this could explain the unreliability of treatment and 
prediction of tumor evolution. More importantly, chaos in tumor growth model,could be used to 
adjust strategies for fighting cancer. Treatment could include some form of chaos synchronization, 
chaos control and/or anti-control. Since the seminal work of Pecora and Carroll [28], on the 
synchronization of chaotic systems. Synchronization phenomenon has formed a new body of 
research activities which is at the fore front of recent application topics in nonlinear dynamics 
[29]-[32]. As a result, enormous progress has been made in understanding various types [33]-[48] 
and methods [28], [49]-[61] of synchronization. 
Complete synchronization is signalized by the equality of state variables evolving in time, while 
anti-synchronization is signalized by the disappearance of the sum of relevant variables evolving in 
time. In hybrid synchronization of chaotic systems ,one part of the system is synchronized and the 
other part is anti-synchronized so that the complete synchronization and anti-synchronization 
coexist in the system. Projective synchronization is interesting because of its proportionality 
between the synchronized dynamical states .Mainieri and Rehacek were the first to study it and they 
declared that two identical systems could be synchronized up to a scaling factor  , which is a 
constant transformation between the synchronized variables of the driven and response systems 
[34]-[38]. Obviously, complete synchronization and anti phase synchronization are special cases of 
projective synchronization with 1=  and 1=   respectively. 
In this paper we achieve hybrid and projective synchronization of the trajectory of coupled tumor 
growth and decay models with different initial conditions via Active control method. This study can 
be used as a powerful tool for adjusting strategies for fighting cancer. By synchronization, 
reliability of treatment and prediction of tumor evolution become possible. This paper may be a 
base to devise the appropriable devices for the treatment of cancer growth. Also, numerical 
experiments are performed to show such synchronization on tumor growth and decay models. 
 
2. Model description 
A multiscale diffusion cancer-invasion model (MDCM) was presented in [62]-[70], which 
considers cellular and micro environmental factors simultaneously and interactively. The model 
was classified as hybrid, since a continuum deterministic model (based on a system of 
reaction-diffusion chemotaxis equations) controls the chemical and extracellular matrix (ECM) 
kinetics and a discrete cellular automata-like model (based on a biased random-walk model) 
controls the cell migration and interaction. The interactions of the tumor cells, 
matrix-metalloproteinases (MMs), matrix-degradative enzymes (MDEs) and oxygen are described 
by the four coupled rate PDEs:  

   ),(= 2 fnnD
t

n
n 


   (2.1) 

   ,= mf
t

f 



 (2.2) 

   ,= 2 mnmD
t

m
m  




 (2.3) 

   .= 2 cnfcD
t

c
c  




 (2.4) 



 Hybrid and Projective Synchronization of Multi-Scale Cancer-Invasion Model  3 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18 

where n  denotes the tumor cell density, f  is the MM-concentration, m  corresponds to the 

MDE-concentration and c  denotes the oxygen concentration. The four variables, n , m , f , c
are all functions of the 3-dimensional spatial variable x and time t. All equations represent diffusion 
except(2.2), which shows only temporal evolution of the MM-concentration coupled to the 

MDE-concentration. nD  is the tumor cell coefficient , mD  is the MDE coefficient and 0>cD  

is the oxygen diffusion coefficient,while  ,,,,,,  are positive constants.The other 

terms respectively denote: 
 
 ;shapototaxi)..(  fn  

 ;cellby tumor  MDE ofpoduction N  

 ;MDE ofdecay m  

 ;MDEby  MM ofn degradatiomf  

 ;oxygen ofdecay  naturalc  

 ;and  uptakeoxygen n  

 .MMby oxygen   of  productionf  

Because of its hybrid nature (cells are treated as discrete entities and micro environmental 
parameters are treated as continuous concentrations), the 4-dimensional (4D) model (2.1)-(2.4) can 
be directly linked to experimental measurements of those cellular and micro environmental 
parameters recognized by cancer biologists are treated as very important in cancer invasion . 
Furthermore, the fundamental unit of the model is the cell, and the complex collective behavior of 
the tumor emerges as a consequence of interactions between factors influencing the life cycle and 
movement of individual cells [62], [64], [65], [68], [69], [70]. In order to use realistic parameter 
values, the system of rate equations (2.1-2.4) was non-dimensionalised. In order to use realistic 
parameter values, we first of all non-dimensionalised the equations (2.1) - (2.4) in the standard way. 
We rescale distance with an appropriate length scale L (e.g. the maximum invasion distance of the 
cancer cells at this early stage of invasion, approximately 1 cm), time with   (e.g. the average 

time taken for mitosis to occur, approximately 8-24 h), tumour cell density with 0n , ECM density 

with 0f , MDE concentration with 0m  and oxygen concentration with 0c  (where 000 ,, mfn  

and 0c  are appropriate reference variables). Therefore, setting 

 

  

t

t
L

x
x

c

c
c

m

m
m

f

f
f

n

n
n =~,=~,=~,=~,=

~
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in equations (2.1)- (2.4). After dropping the tildes notational convenience, the resulting 4D scaled 
system of rate PDEs [64] is given by  

   ),(= 2 fnnd
t

n
n 


   (2.5) 
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   ,= mf
t

f 



 (2.6) 

   ,= 2 mnmd
t

m
m  




 (2.7) 

   .= 2 cnfcd
t

c
c  




 (2.8) 

The values of non-dimensional parameters were given as[64]: 

0.0005=nd , 0.01= , 50= , 0.0005=md , 1= , 0= , 0.5=cd , 0.5= , 

0.57= , 0.025.=  

 
2.1.  A chaotic multi-scale cancer-invasion model. [73] From the non-dimensional 
spatio-temporal AC model (2.5)- (2.8), discretization was formed by neglecting all the spatial 
derivatives which means cmfn  ,,,  all becomes zero and our coupled partial differential 

equations (2.5)- (2.8) reduced into ordinary coupled differential equations as all the four variable 

n,m,f and c now depends only on time, thus 
dt

dn

t

n
=




,  
dt

dm

t

m
=




 ,
dt

df

t

f
=




and 
dt

dc

t

c
=




.  
Hence our model resulting into 4D temporal dynamical system which can de described as :  
   0,=n  (2.9) 

   ,= mff   (2.10) 

   ,= mnm    (2.11) 

When simulated, the temporal system (2.9)-(2.12) with the set of parameters,  
  0.025.=0.57,=0.5,=0,=1,=50,=0.01,=   (2.13) 

exhibits a virtually linear temporal behavior with almost no coupling between the four 
concentrations that have very different quantitative values (all phase plots between the four 
concentrations, are virtually one-dimensional). To see if a modified version of the system (2.9)- 
(2.12) could lead to a chaotic description of tumor growth, four new parameters  ,  ,   ,  

were introduced.The resulting model is:  
   0,=n  (2.14) 

   ),(= fmf   (2.15) 

   ,)(= mcfnm    (2.16) 

   .= cnfmc    (2.17) 

The introduction of the parameters ( , , , ) was motivated by the fact that tumor cell shape 

represents a visual manifestation of an underlying balance of forces and chemical reactions [71]. 
Specifically, the parameters represent the following quantities:  
 ,fraction)ion proliferatration/non (prolife  volumecelltumor =   

 ,level  glucose=  
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 ,cells tumor ofnumber =  

 .level)n  (saturatio surface   thefrom diffusion =  

 For computations, the parameters were set to 0.06=  , 0.05= , 26.5=  , 40= . 

Small variation of these chosen values would not affect the qualitative behavior of the new 
temporal model (2.14)- (2.17). Simulations of (2.14)- (2.17), using the initial conditions(

.5=(0)=(0)1.5,=(0).5,=(0) cmfn ) and the same non-dimensional parameters as before 

given in (2.13), show chaotic behavior in the form of Lorenz-like strange attractors in the 3D (f - m 
- c) subspace of the full 4D (n - f - m - c) phase-space.(Figure 1;(A),(B),(C) & (D))  

(a) (b)  

(c) (d)  
Figure 1: (a) Phase Portrait of a tumor growth system in the m-f-c space ; and projections on (b) the 
f-m plane, (c) the f-c plane and (d) the c-m plane. 
 
3. Hybrid Synchronization of Two Identical Tumor Growth Model Using Active 
Control Method. 
For a system of two identical chaotic systems to be in hybrid synchronization, we consider 

master/drive system with subscript 1 in Tumor growth model and slave/response system with 
subscript 2  in Tumor growth model with different initial conditions. Then drive and response 
systems are defined as follows: 

   0,=1n  

   ),(= 111 fmf   

   ,)(= 11111 mcfnm    

   .= 11111 cnmfc    (3.1) 
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 and  

   ),(0= 12 tUn   

   ),()(= 2222 tUfmf   

   ),()(= 322222 tUmcfnm    

   ).(= 422222 tUcnmfc    (3.2) 

where )(),(),( 321 tUtUtU  and )(4 tU  are the control functions in the response system. We 

aim to design the control functions )(tUi , i=1,2,3 and 4. 

To observe hybrid synchronization between the master system (3.1) and the slave system (3.2) , we 
firstly note that the co-existence of synchronization and anti- synchronization in a system can occur 
in more than one way. The master system (3.1) contains four state variables namely 

1111 &,, cmfn Thus, various combinations of variables can be made to get synchronized while the 

remaining variables will then be anti-synchronized. Using the theory of combinations, it follows 
that there are C (4, 0)+C (4, 1)+C (4, 2)+C (4, 3)+C (4, 4) = 16 possible ways of combining the 
variables. Out of them, C(4,4) and C(4,0) correspond to the cases of complete synchronization and 
anti-synchronization respectively. Hence, there are 14 different hybrid synchronization phenomena 
possible. 
Let us discuss two of the above mentioned cases: 

Case – 1.  First, we completely synchronize the state variable 1n  and 1m ; and the state variables 

i.e 1f  and 1c  are anti-synchronized. The hybrid synchronization errors are defined as ; 

 .==,=,= 124123122121 ccEandmmeffEnne   (3.3) 

using (3.1), (3.2) and (3.3) the corresponding error dynamics is given by :  

   ),(= 11 tUe  

   ),(2)(= 21232 tUmEeE    

   ),(2= 3221113213 tUcfcffeEee    

   ).()2(= 441111224 tUEnemfmfE    (3.4) 

 
Figure 2: Phase Portrait of master (red,thick) and slave system (blue,dotted) in m-f-c space. 
 
This error system (3.4) to be controlled must be a linear system. To eliminate the non-linear terms 
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in (3.4), we redefine the control functions as :  

   ),(=)( 11 tVtU  

   ),(2=)( 212 tVmtU    

   ),(2=)( 3221113 tVcfcfftU   

   ).(2=)( 4111224 tVnmfmftU    (3.5) 

Subsequently, the new error system can be expressed as:  

   ),(= 11 tVe  

   ),()(= 2232 tVEeE   

   ),(= 33213 tVeEee    

   ).(= 4414 tVEeE    (3.6) 

The error system (3.6) to be controlled is a linear system with controlled inputs iV ; (i = 1, 2, 3, 4) 

as functions of error states ie ; (i=1,3) and iE ; (i=2,4). If 0=)(telim it   , (i= 1 ,3) and 

0=)(tElim it   , (i= 2, 4) ,synchronization and anti-synchronization between master and slave 

system is realized respectively . There are many possible choices for the controls )(),(),( 321 tVtVtV  

and )(4 tV  to obtain the required conditions. We choose 
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 (3.7) 

Here A is a square matrix of order four to be determined. Choosing, 
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
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
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=
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A  (3.8) 

Using (3.7)and (3.8),we get the values for )(),(),( 321 tVtVtV  and )(4 tV ,then (3.4) can be 

rewritten as: 
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where, 
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




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
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=B
 (3.9) 

 
Hence the error system becomes  

  44332211 ==,=,= EEandeeEEee    (3.10) 

Now, we consider the Lyapunov function as;  

  )1/2(=1/2=)( 2
4

2
3

2
2

2
1 EeEeeeeV T   (3.11) 

which is a positive definite function on 4R . Differentiating (3.11) along the trajectories of (3.10), 
we get  

  2
4

2
3

2
2

2
1=)( EeEeeV   (3.12) 

which is a negative definite function on 4R . Thus, by Lyapunov stability theory [72], the error 
dynamics (3.4) is globally exponentially stable. Hence, it is proved that 

31=0,=)( anditelim it   and 42=0,=)( anditElim it   and hence, 

state variable 1n  and 1m  are synchronized while the state variables 1f  and 1c  are 

anti-synchronized. Thus, hybrid synchronization is achieved between the master and slave systems 
(3.1) and (3.2).  
3.1.  Simulation results.  Numerical results are presented to demonstrate the effectiveness of the 
proposed technique. We select the parameters of tumor growth and decay system as 0.06=  , 

0.05= , 26.5=  , 40= . So that tumor growth and decay exhibits a chaotic behavior. 

The initial values of the master and slave systems are ( (0)(0),(0),(0), 1111 cmfn ) = 

.5.5,1.5,.5,( ) and ( (0)(0),(0),(0), 2222 cmfn ) = ( 1.5,1.5,21, )respectively, while the 

initial states of the error system (3.10) are ( (0)(0),(0),(0), 4321 EeEe ) = ( .5,0,1,2.5) with 

these initial values, the phase portrait of master and slave systems together in mfc plane display 
hybrid synchronization in Figure 2. The time waveform diagram of master and slave states 

variables are illustrated Figure 3. It is shown that the states 1n  and 2n  display a synchronization 

phenomenon, 1f  and 2f  shows anti synchronization behaviour, 1m  and 2m  also 

synchronized in complete way and 1c  and 2c  display anti synchronization behaviour. The 

dynamics of synchronization and anti-synchronization error functions for the drive and response 

systems verses time "t" is shown in (Figure 4) by trajectories )(),(),( 321 tetEte  and )(4 tE . We 

can see that the synchronization error will converge to zero at 6=t . Thus, desired chaos 
synchronization is achieved between two identical tumor growth and decay systems with different 
initial conditions.  
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(a) (b)       

(c)  (d)  
Figure 3: The time waveform diagram of the two identical tumor growth and decay systems with 
different initial conditions by using active control method in hybrid synchronization cases : (a) 

Time series signals 1n (red,thick) and 2n (blue,dotted) ; (b) Time series signals 1f (red,thick) and 

2f (blue,dotted); (c) Time series signals 1m (red,thick) and 2m (blue,dotted) and (d) Time series 

signals 1c (red,thick) and 2c (blue,dotted). 

 
 

 
Figure 4:  The synchronization error functions )(1 te , )(2 tE , )(3 te & )(4 tE  of four state 

variable tends to 0  at t=6. 
 



10  AYUB KHAN & ARTI TYAGI 
 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 1-18 

Case -2. Now consider the case where the combination is reversed  i.e we anti synchronize the 

state variables 1n  and 1m  and completely synchronize the state variables 1f  and 1c  . The 

hybrid synchronization errors are defined as ; 

 .==,=,= 124123122121 cceandmmEffennE   (3.13) 

using (3.1), (3.2) and (3.13), the corresponding error dynamics is given by :  

   ),(= 11 tUE  

   ),(2)(= 21232 tUmeEe    

   ),(2= 3221113213 tUcfcffEeEE    

   ).()2(= 441111224 tUenEmfmfe    (3.14) 

 

 
Figure 5: Phase Portrait of master system (red,thick) and slave system (blue,dotted) in m-f-c space. 
 
Following the earlier line of arguments, we redefine the control functions as follows: 

   ),(=)( 11 tVtU  

   ),(2=)( 212 tVmtU   

   ),(2=)( 3221113 tVcfcfftU    

   ).(2=)( 4111224 tVnmfmftU    (3.15) 

Thus, the linear error system can be written as: 

   ),(= 11 tVE  

   ),()(= 2232 tVeEe   

   ),(= 33213 tVEeEE   

   ).(= 4414 tVeEe    (3.16) 

This is again equivalent to the linear error dynamics as given by (3.6).Again with the same choice 
of matrices A and B as given in (3.8) and (3.9) respectively ,the error system becomes  
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  44332211 ==,=,= eeandEEeeEE    (3.17) 

Now we consider the Lyapunov function as;  

  )1/2(=1/2=)( 2
4

2
3

2
2

2
1 eEeEeeeV T   (3.18) 

which is a positive definite function on 4R . Differentiating (3.18) along the trajectories of (3.17), 
we get 

  2
4

2
3

2
2

2
1=)( eEeEeV   (3.19) 

which is a negative definite function on 4R . Thus, by Lyapunov stability theory [72], the error 
dynamics (??) is globally exponentially stable. Hence, it is proved that 

31=0,=)( anditElim it   and 42=0,=)( anditelim it   and state 

variables 1n  and 1m  are anti-synchronized while the remaining state variables 1f  and 1c  are 

completely synchronized. Thus, hybrid synchronization is achieved between the master system 
(3.1) and slave system (3.2). 
3.2.  Simulation results.  Numerical results are presented to demonstrate the effectiveness of the 
proposed technique. We select the parameters of tumor growth systems as 0.06=  , 

0.05= , 26.5=  , 40=  so that tumor growth systems exhibits a chaotic behavior. The 

initial values of the master and slave systems are ( (0)(0),(0),(0), 1111 cmfn ) = ( .5.5,1.5,.5, ) 

and ( (0)(0),(0),(0), 2222 cmfn ) = ( 1.5,1.5,21, ) respectively, while the initial states of the 

error system (3.17) are ( (0)(0),(0),(0), 4321 eEeE ) = ( 3,2,1.51.5, ) with these initial values 

the phase portrait of master and slave systems together in mfc plane display hybrid synchronization 
(Figure 5). The time waveform diagram of master and slave states variables are illustrated in 

(Figure 6). It is shown that the states 1n  and 2n  display anti synchronization phenomenon, 1f  

and 2f  shows complete synchronization behaviour, 1m  and 2m  also synchronized in anti way 

and 1c  and 2c  display complete synchronization behaviour. The dynamics of synchronization 

error functions for the drive and response systems verses time "t" is shown in Figure 7 by 

trajectories )(),(),( 321 tEtetE  and )(4 te . These figures display that synchronization error will 

converge to zero at 8=t  and we achieve desired hybrid projective synchronization between two 
identical tumor growth and decay systems with different initial conditions. 

(a) (b)  
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(c)  (d)  
Figure 6: The time waveform diagram of the two identical tumor growth system with different 
initial condition by using active control method in hybrid synchronization cases) : (a) Time series 

signals 1n (red,thick) and 2n (blue,dotted) ; (b) Time series signals 1f (red,thick) and 2f

(blue,dotted); (c) Time series signals 1m (red,thick) and 2m (blue,dotted) and (d) Time series 

signals 1c (red,thick) and 2c (blue,dotted). 

 

                  
Figure 7: The synchronization error functions )(1 tE , )(2 te , )(3 tE & )(4 te  of four state 

variable tends to 0  at t=8. 
4.  Projective Synchronization Between Two Identical Tumor Growth Model. 
To observe the projective synchronization between master and slave systems given in (3.1)and 
(3.2)respectively. Lets us define the projective synchronization error as :  

  .==,=,= 124123122121 cceandmmeffenne    (4.1) 

where   is a constant parameter. Now, the error dynamics is given as :-  

   ),(= 11 tUe  

   ),()(= 2232 tUeee   

   ),(= 322113213 tUcfcfeeee    

   ).(= 44111224 tUeemfmfe    (4.2) 
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Figure 8: Phase Portrait of master system (red,thick) and slave system (blue,dotted) in m-f-c space. 
This error system (4.2) to be controlled must be a linear system with control functions. Thus, let us 
redefine the control functions so that the terms in (4.2) which cannot be expressed as linear terms in 

sei '  are eliminated.  

   ),(=)( 11 tVtU  

   ),(=)( 22 tVtU  

   ),(=)( 322113 tVcfcftU   

   ).(=)( 411224 tVmfmftU    (4.3) 

The new error system is expressed as:  

   ),(= 11 tVe  

   ),()(= 2232 tVeee   

   ),(= 33213 tVeeee   

   ).(= 4414 tVeee    (4.4) 

Again, (4.4) is the identical system as given in (3.6). Hence, following the same steps, the error 
system becomes  

  .==,=,= 44332211 eeandeeeeee    (4.5) 

Now we consider the Lyapunov function as;  

  .)1/2(=1/2=)( 2
4

2
3

2
2

2
1 eeeeeeeV T   (4.6) 

which is a positive definite function on 4R . Differentiating (4.6) along the trajectories of (4.5), we 
get    

  ,=)( 2
4

2
3

2
2

2
1 eeeeeV   (4.7) 

which is a negative definite function on 4R . Thus, by Lyapunov stability theory [72], the error 

dynamics (??) is globally exponentially stable. Hence, 4.1,2,3=0,=)( anditelim it   

This ascertains the projective synchronization between the master system (3.1) and slave system 
(3.2).  
4.1.  Simulation results.  Numerical results are presented to demonstrate the effectiveness of the 
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proposed technique. We select the parameters of tumor growth system as 0.06= , 0.05= , 

26.5= , 40=  for these values tumor growth model exhibits a chaotic behavior. The initial 

values of the master and slave systems are ( (0)(0),(0),(0), 1111 cmfn ) = ( .5.5,1.5,.5, ) and      

( (0)(0),(0),(0), 2222 cmfn ) = ( 1.5,1.5,21, ) respectively. On choosing parameter 2=  

for projective synchronization, the initial states of the error system (4.5) becomes                  

( (0)(0),(0),(0), 4321 eeee )=( 4.5,.5,10, ). With these initial values the phase portraits of 

master and slave systems together in mfc plane display projective synchronization in Figure 8. The 
time waveform diagram of master and slave systems states variables are illustrated in Figure 9. It is 
observed that the states of slaves system converges two times the values of the states of master. The 
dynamics of synchronization error functions for the drive and response systems verses time "t" is 

shown (Figure 10) by trajectories )(),(),( 321 tetete  and )(4 te . We can see that the 

synchronization error will converge to zero at 10=t  and two identical tumor growth chaotic 
systems are indeed achieving projective synchronization. 
Also,it is easy to see that complete and anti synchronization are the special cases of projective 
synchronization with parameter 1=  and 1=   respectively. 
 

(a) (b)  

(c)  (d)  
 
Figure 9: The time waveform diagram of the two identical tumor growth systems with different 
initial conditions by using active control method in projective synchronization with 2=  : (a) 

Time series signals 1n (red,thick) and 2n (blue,dotted) ; (b) Time series signals 1f (red,thick) and 

2f (blue,dotted); (c) Time series signals 1m (red,thick) and 2m (blue,dotted) and (d) Time series 
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signals 1c (red,thick) and 2c (blue,dotted). 

 

 
Figure  10:  The synchronization error functions )(1 te , )(2 te , )(3 te & )(4 te  of four state 

variable tends to 0  at t=10. 
 
5. Conclusion 
In this manuscript, we presented two kind of synchronization i.e hybrid synchronization and 
projective synchronization between two Tumor growth models evolving from different initial 
conditions using the Active Control Technique which is based on Lyapunov Stability Theory. The 
effectiveness and feasibility of results are validated in numerical simulations which are performed 
by using Mathematica software. Remarkably, our analytic and computational results are in an 
excellent agreement. It is a significant mathematical description to devise the sophisticated 
experimental mechanism for the treatment of tumor growth.   
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1. Introduction 
A self-mapping T  defined on a bounded, closed and convex subset K  of a Banach space X  is 
said to be nonexpansive if (for all Kyx  , )  

 .||yxTyTx  ||||||  

It is well known that sequence of Picard iteration [1] defined as (for any Kx 1 )  

 N nxTx n
n      ,=1  (1.1)

 

need not be convergent in respect of a nonexpansive mapping. E.g., the sequence of iterates 

nn Txx =1  for the mapping 1,1][1,1][: T  defined by xTx =  does not converges to 

0  which is indeed the fixed point of T . In an attempt to construct a convergent sequence of 
iterates in respect of a nonexpansive mapping, Mann [2] defined an iteration method as: (for any 

Kx 1 )  

 N nTxxx nnnnn      ,)(1=1 
 (1.2) 

where (0,1)n . 

With a view to have a better rate of convergence, Ishikawa [3] introduced a new iteration procedure 

as follows: (for Kx 1 )  

 

N  nTyxxTxxy nnnnnnnnnn    ,)(1=,)(1= 1 
 (1.3)

 

where (0,1) , nn  . 

Iterative techniques for approximating fixed points of nonexpansive single-valued mappings have 
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been investigated by various authors (see; e.g., [4, 5, 6]) using the Mann iteration scheme or the 
Ishikawa iteration scheme. By now, there exists an extensive literature on the iterative fixed points 
for various classes of mappings. For an upto date account of literature on this theme, we refer the 
readers to Berinde [7]. 
Let X  be a Banach space and K  be a nonempty subset of X . Let )(KCB  be the family of 

nonempty closed bounded subsets of K  while )(KKC  be the family of nonempty compact 

convex subsets of K . A subset K  of X  is called proximinal if for each Xx , there exists 

an element Kk  such that  

 }.:{inf=),(=),( KyyxKxdistkxd  ||||  

It is well known that every closed convex subset of a uniformly convex Banach space is proximinal. 
We shall denote by )(KPB , the family of nonempty bounded proximinal subsets of K . The 

Hausdorff metric H  on )(KCB  is defined as  

 ).( ,  )},(sup),,(sup{=),( KCBBAforAydBxdmaxBAH
ByAx




 

A multivalued mapping )(: KCBKT   is said to be nonexpansive if  

 . ,   ,))(),(( KyxallforyxyTxTH  ||||  

We use the notation )(TF  for the set of fixed points of the mapping T  while ),( TtF  denotes 

the set of common fixed points of t  and T , i.e. a point x  is said to be a common fixed point of 

t  and T  if .= Txtxx   
In 2010, Sokhuma and Kaewkhao [8] introduced a modified Ishikawa iterative process involving a 
pair of single valued and multivalued nonexpansive mappings in Banach spaces and proved strong 
convergence theorems. This scheme has been studied by several authors [8, 9, 10, 11] with respect 
to different class of mappings in Banach Spaces. The purpose of this paper is to study modified 
Ishikawa iterative method for a hybrid pair of nonexpansive mappings in CAT(0) spaces.  
 
2.   Some iteration procedure for multi-valued mapping  
In 2005, Sastry and Babu [12] defined Ishikawa iteration scheme for multivalued mappings. Let 

)(: KPBKT   a multivalued mapping and fix ).(TFp  Then the sequence of Ishikawa 

iteration is defined as follows: 

Choose Kx 0 ,  

 0,  [0,1],    ,)(1=  nxzy nnnnnn   

where )( nn xTz   such that ))(,(= nn xTpdpz ||||   and  

 0, [0,1],  ,)(1=1  nxzx nnnnnn   

where )( nn yTz   such that )).(,(= nn yTpdpz ||||   

Sastry and Babu [12] proved that Ishikawa iteration scheme for a multivalued nonexpansive 
mapping T  converges to a fixed point of T  under certain conditions. In 2007, Panyanak [13] 
extended the results of Sastry and Babu to uniformly convex Banach space for multivalued 
nonexpansive mappings. Panyanak also modified the iteration scheme of Sastry and Babu and 
imposed the question of convergence of this scheme. He introduced the following modified 
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Ishikawa iteration method, 

Choose Kx 0 , then  

 0, 1,<<<0 ],,[   ,)(1=  nbabaxzy nnnnnn   

where nn Txz   is such that ),,(= nnnn Txudistuz ||||   and )(TFun   such that 

)),(,(= TFxdistux nnn ||||   and  

 ],,[   )(1=1 baxzx nnnnnn    

where )( nn yTz   such that ),,(= nnnn Tyvdistvz ||||   and )(TFvn   such that 

)).(,(= TFydistvy nnn ||||   

In 2009, Song and Wang [14] pointed out the gap in the result of Panyanak [13]. They 
solved/revised the gap and gave the partial answer to the question raised by Panyanak by using the 
following iteration scheme. 

Let [0,1] , nn   and )(0,n  such that 0=lim n
n




. Choose ,0 Kx   then  

 
,)(1=

,)(1=

1 nnnnn

nnnnn

xzx

xzy









 

where ),( nnnn TyTxHzz  ||||  + n  and ),( 11 nnnn TyTxHzz   ||||  + n  for 

nn Txz   and .nn Tyz   

Simultaneously, Shahzad and Zegeye [15] extended the results of Sastry and Babu, Panyanak, and 
Song and Wang to quasi nonexpansive multivalued mappings and also relaxed the end point 
condition and compactness of the domain by using the following modified iteration scheme and 
gave the affirmative answer to the Panyanak question in a more general setting. 

 0,  [0,1],  ,)(1=  nxzy nnnnnn   

 0,  [0,1],  ,)(1=1  nxzx nnnnnn   

where nn Txz   and .nn Tyz   

Recently, Sokhuma and Kaewkhao [8] introduced the following modified Ishikawa iteration 
scheme for a pair of single valued and multivalued mapping. 
Let K  be a nonempty closed and bounded convex subset of Banach space X , let KKt :  

be a single valued nonexpansive mapping and let )(: KCBKT   be a multivalued 

nonexpansive mapping. The sequence }{ nx  of the modified Ishikawa iteration is defined by  

                          ,)(1=,)(1= 1 nnnnnnnnnn xtyxxzy                (1.4) 

where Kx 0 , nn Txz   and 1.< ,<0 ba nn    

Furthermore, they proved the following strong convergence theorem:  
Theorem 2.1. Let K  be a nonempty compact convex subset of a uniformly convex Banach space 
X , and let KKt :  and )(: KCBKT   be a single valued and a multivalued 

nonexpansive mapping, respectively, and =),( TtF  satisfying }{= wTw  for all 
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),( TtFw . Let }{ nx  be the sequence of the modified Ishikawa iteration defined by (1) with 

1< ,<0 ba nn   . Then }{ nx  converges strongly to a common fixed point of t  and T .  

 
3.   The CAT(0) space setting 
To make our presentation self contained, we collect relevant definitions and relevant results. In a 
metric space ),( dX , a geodesic path joining Xx  and Xy  is a map c from a closed 

interval Rr ][0,  to X  such that yrcxc =)( ,=(0)  and |=|))( ),(( tssctcd   for all 

] [0, , rts  . In particular, the mapping c  is an isometry and ryxd =) ,( . The image of c  is 

called a geodesic segment joining x  and y  which is denoted by ] ,[ yx  whenever such a 

segment exists uniquely. For any Xyx  , , we denote the point ] ,[ yxz  by 

yxz   )(1= , where 10   if ) ,(=) ,( yxdzxd   and 

) ,()(1=) ,( yxdyzd  . The space ) ,( dX  is called a geodesic space if any two points of 

X  are joined by a geodesic and X  is said to be uniquely geodesic if there is exactly one 
geodesic joining x  and y  for each Xyx  , . A subset K  of X  is called convex if K  

contains every geodesic segment joining any two points in K . 

A geodesic triangle ) , ,( 321 xxx  in a geodesic metric space ) ,( dX  is consisted of three 

points of X  (as the vertices of  ) and a geodesic segment between each pair of points (as the 

edges of  ). A comparison triangle for ) , ,( 321 xxx  in ) ,( dX  is a triangle 

), ,(:=) , ,( 321321 xxxxxx   in the Euclidean plane 2R  such that 

) ,(=) ,(2 jiji xxdxxd
R

 for {1,2,3} , ji . A point ] ,[ 21 xxx  is said to be comparison 

point for ],[ 21 xxx  if ),(=),( 11 xxdxxd . Comparison points on ],[ 32 xx  and ],[ 13 xx  

are defined in the same way.  
A geodesic metric space X  is called a CAT(0) space if all geodesic triangles satisfy the following 
comparison axiom namely: CAT(0) inequality  

Let   be a geodesic triangle in X  and let   be its comparison triangle in 2R . Then   is 

said to satisfy the CAT(0) inequality if for all yx  ,  and all comparison points ,   , yx  

 ). ,() ,( 2 yxdyxd
R

  

If 1 , yx  and 2 y  are points of CAT(0) space and 0y  is the midpoint of the segment ] ,[ 21 yy , 

then the CAT(0) inequality implies  

 .),(
4

1
),(

2

1
),(

2

1
  ),( 2

21
2

2
2

1
2

0 yydyxdyxdyxd   

The above inequality is known as (CN) inequality and was given by Bruhat and Tits [16]. A 
geodesic space is a CAT(0) space if and only if it satisfies (CN) inequality. 
Towards certain classes of examples, one may recall that every convex subset of Euclidean space 

nR  endowed with the induced metric is a CAT(0) space. Also, the class of Hilbert spaces are 
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examples of CAT(0) space. Moreover, if any real normed space X  is CAT(0) space, then it is a 

pre-Hilbert space. Furthermore, if 1X  and 2X  are CAT(0) spaces, then so is 21 XX  . For 

further details on CAT(0) spaces, one can consult [16, 17, 18, 19]. 
Now, we collect some basic geometric properties which are instrumental throughout the 

discussions. Let X  be a complete CAT(0) space and }{ nx  be a bounded sequence in X . For 

Xx , set:  

 ).,(limsup=}){,( n
n

n xxdxxr


 

The asymptotic radius })({ nxr  is given by  

 }, :),({inf=})({ Xxxxrxr nn   

and the asymptotic center })({ nxA  of }{ nx  is defined as:  

 })}.({=),(:{=})({ nnn xrxxrXxxA   

It is well known that in a CAT(0) space, })({ nxA  consists of exactly one point (see Proposition 5 

of [20]). 
In 2008, Kirk and Panyanak [21] gave a concept of convergence in CAT(0) spaces which is 
analogue of weak convergence in Banach spaces and restriction of Lim’s concept of convergence 
[22] to CAT(0) spaces.  

Definition 3.1.  ([21]). A sequence }{ nx  in X  is said to  -converge to Xx  if x  is the 

unique asymptotic center of nu  for every subsequence }{ nu  of }{ nx . In this case we write 

xxnn =lim  and read as x  is the  -limit of }.{ nx  

 Notice that for a given Xxn }{  which  -converges to x  and for any Xy  with 

xy   (owing to uniqueness of asymptotic center), we have  

 ).,(limsup<),(limsup yxdxxd n
n

n
n 

 

Thus every CAT(0) space satisfies the Opial property. Now, we collect some basic facts about 
CAT(0) spaces which will be frequently used throughout the text.  
Lemma 3.1.  ([21]). Every bounded sequence in a complete CAT(0) space admits a 
-convergent subsequence.  

Lemma 3.2. ([23]). If K  is closed convex subset of a complete CAT(0) space and if )( nx  is a 

bounded sequence in K , then the asymptotic center of }{ nx  is in K .  

Lemma 3.3.  ([24]). Let ) ,( dX  be a CAT(0) space. For Xyx  ,  and [0,1],  t  there 

exists a unique ] ,[ yxz  such that  

 ).,()(1=),(        ),(=),( yxdtzydandyxtdzxd   

Notice that we use the notation tyxt  )(1  for the unique point z  of the above lemma.  

Lemma 3.4. ([24]). For Xzyx ,,  and [0,1]t  we have  

 ).,(),()(1),)((1 zytdzxdtztyxtd   
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Lemma 3.5.  ([24]). Let X  be a CAT (0) space. Then  

 2222 ),()(1),(),()(1),)((1 yxdttzytdzxdtztyxtd   

for all Xzyx ,,  and [0,1]t .  

 In 2008, Shahzad and Markin [25] proved the common fixed point theorem for a hybrid pair of 
nonexpansive mappings.  
Lemma 3.6.  Let X  be a complete bounded CAT(0)space and assume that XXt :  and 

XXT 2:   are nonexpansive mappings with )(xT  a compact convex subset of X  for each 

Xx . If the mappings t  and T  commute then there is Xz  such that )()(= zTztz  .  

The following lemma is a consequence of Lemma 2.9 of [26] which will be used to prove our main 
results. 

Lemma 3.7.  Let X  be a complete (0)CAT  space and let Xx . Suppose }{ nt  is a 

sequence in ],[ cb  for some (0,1), cb  and }{ nx , }{ ny  are sequences in X  such that 

rxxd n
n




),(limsup  , rxyd n
n




),(limsup , and rxytxtd nnnn
n

=),)((1lim 


 for 

some 0r . Then  

 0.=),(lim nn
n

yxd


 

Lemma 3.8.  Let X  be a CAT(0) space, and let K  be a nonempty closed convex subset of X
Then,  
 ),,(),(),(),( TyTxHTxxdistxydTyydist   

where Kyx ,  and T  is a multivalued mapping from K  to )(KCB .  

Now, we present the iteration scheme of Sokhuma and Kaewkhao [8] in CAT(0) spaces setting 
which is described as follows: 
Let K  be a nonempty closed and bounded convex subset of a CAT(0) space X , let KKt :  

be a single valued nonexpansive mapping and let )(: KCBKT   be a multivalued 

nonexpansive mapping. The sequence }{ nx  of the modified Ishikawa iteration is defined by  

     nnnnnnnnnn xtyxxzy )(1=,)(1= 1        (3.1)
 
 

where Kx 0 , nn Txz   and 1.< ,<0 ba nn    

The purpose of this paper is to study the convergence of iteration scheme (3.1) for nonexpansive 
mapping in CAT(0) spaces which enable us to enlarge the class of spaces. Our results generalize 
and extend the corresponding relevant results in Sokhuma and Kaewkhao [8]. 
 
4.   Main Results 
We first prove the following lemmas which play very important roles in this section.  
Lemma 4.1.  Let K  be a nonempty closed convex subset of a CAT(0) space X . Let 

KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mappings, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . Let 
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}{ nx  be the sequence of the modified Ishikawa iteration defined by (3.1). Then, ),(lim wxd n
n 

 

exists for all ),( TtFw .  

Proof.  Let Kx 0  and ),( TtFw , we have  

 

),(=

),(),()(1),()(1

),(),()(1),()(1

),(),()(1),()(1=

),(),()(1),()(1

),)((1),()(1=

),(),()(1

),(),()(1

),)((1=),( 1

wxd

wxdwxdwxd

TwTxHwxdwxd

Twzdistwxdwxd

wzdwxdwxd

wzxdwxd

wydwxd

wtydwxd

wtyxdwxd

n

nnnnnnnn

nnnnnnnn

nnnnnnnn

nnnnnnnn

nnnnnnn

nnnn

nnnn

nnnnn























 

which implies that )},({ wxd n  is a decreasing and bounded below sequence i.e. convergent 

sequence. Thus, we conclude that the limit of )},({ wxd n  exists.  

Lemma 4.2.  Let K  be a nonempty compact convex subset of a CAT(0) space X . Let 
KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mapping, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . Let }{ nx  

be the sequence of the modified Ishikawa iteration defined by (3.1). If 1<<0 ba n   for 

some Rba, , then 0.=),(lim nn
n

xtyd


 

Proof. Let ),( TtFw . From Lemma 4.1, ),(lim wxd nn   exists and we assume that 

cwxd nn =),(lim  . Consider,  

 ),(),(=),( wydtwtydwtyd nnn   

 ),)((1= wzxd nnnn    

 ),(),()(1 wzdwxd nnnn    

 ),(),()(1= Twzdistwxd nnnn    

 ),(),()(1 TwTxHwxd nnnn    

 ),(),()(1 wxdwxd nnnn    

 ).,(= wxd n  

 Also,  

 
cwxdwydwtyd n

n
n

n
nn =),(suplim),(suplim),(suplim


    (3)  
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 Then, we have  

 
),)((1lim=),(lim= 1 wtyxdwxdc nnnn

n
n

n
 





. (4)  

 Owing to Lemma 3.7, we conclude from (3) and (4) that 0=),(lim nn
n

xtyd


.  

Lemma 4.3.  Let K  be a nonempty closed convex subset of a CAT(0) space X . Let 
KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mapping, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . Let 

}{ nx  be the sequence of the modified Ishikawa iteration defined by (3.1). If na <0 , 

1<bn   for some Rba, , then, 0.=),(lim nn
n

zxd


 

Proof. Let ),( TtFw . As earlier, we put cwxd nn =),(lim  . For 0n , we have  

 ),)((1=),( 1 wtyxdwxd nnnnn    

 ),(),()(1 wtydwxd nnnn    

 ),(),()(1 wydwxd nnnn    

 and therefore,  

 )),,(),((),(),( 1 wxdwydwxdwxd nnnnn    

 ),(),(
),(),( 1 wydwxd

wxdwxd
nn

n

nn 



 

 Thus, taking limit n , we obtain  

 ),(inflim),(
),(),(

inflim 1 wydwxd
wxdwxd

n
n

n
n

nn

n 


















 

 thereby implying  

 ),(inflim wydc n
n 

  

 From (3), we have that cwyd nn  ),(suplim , which further implies that  

 
),)((1lim=),(lim= wzxdwydc nnnnnnn      (6)  

Recalling that  

 ),(=),( Twzdistwzd nn  

 ),( TwTxH n  

 ),( wxd n  

Hence, we have  

 
cwxdwzd nnnn =),(suplim),(suplim     (7)  

By using Lemma 3.7 and Equations (6) and (7), we get that 0=),(lim nnn zxd .  

Lemma 4.4.  Let K  be a nonempty closed convex subset of a CAT(0) space X . Let 
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KKt :  and )(: KCBKT   be a single-valued and a multivalued generalized 

nonexpansive mapping, respectively, and ),( TtF  satisfying }{= wTw  for all 

),( TtFw . Let }{ nx  be the sequence of the modified Ishikawa iteration defined by (3.1). If 

na <0 , 1<bn   for some Rba, , then, 0.=),(lim nnn xtxd  

Proof.  Consider,  

 ),(),(),( nnnnnn xtydtytxdxtxd   

 ),(),( nnnn xtydyxd   

 ),())(1,(= nnnnnnn xtydzxxd    

 ).,(),( nnnnn xtydzxd   

Then, we have  

 ),(lim),(lim),(lim nn
n

nnn
n

nn
n

xtydzxdxtxd


   

Hence, by Lemma 4.2 and 4.3, 0=),(lim nnn xtxd .  

Theorem 4.5.  Let K  be a nonempty compact convex subset of a CAT(0) space X . Let 
KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mappings, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . Let 

}{ nx  be the sequence of the modified Ishikawa iteration defined by (3.1). If na <0 , 

1<bn  , then yx
in   for some subsequence }{

inx  of }{ nx  implies ),( TtFy .  

Proof.  Let us suppose that 0=),(lim yxd
ini  . From Lemma 4.4, we have  

 0=),(lim
inin

i
xtxd


 

Now, we have  

 ),(),(),( tytxdtxxdtyxd
inininin   

 ).,(),( yxdtxxd
ininin   

On taking lim
i

 both side we get,  

 0.=),(lim tyxd
in

i 
 

Hence by uniqueness of the limit of a sequence we obtain tyy = , that is, )(tFy . Owing to 

Lemma 3.8 and by Lemma 4.4, we get that  

 ),(),(),(),( TyTxHTxxdistxydTyydist
inininin   

 .0.20,),(),(),(  cmiasyxdzxdxyd
inininin  

This implies that )(TFy . Therefore, ),( TtFy  as desired.  

Theorem 4.6.  Let K  be a nonempty compact convex subset of a CAT(0) space X . Let 
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KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mappings, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . Let 

}{ nx  be the sequence of the modified Ishikawa iteration defined by (3.1) with na <0 , 

1<bn  . Then nx  converges strongly to a common fixed point of t  and T .  

Proof. Due to the fact that K  is compact and the sequence }{ nx  is contained in K , there exists 

a subsequence }{
inx  of }{ nx  such that }{

inx  converges strongly to some point Ky , that 

is, 0=),(lim yxd
ini  . Owing to Theorem 4.5, we have ),( TtFy , and by Lemma 4.1, we 

obtain that ),(lim yxd nn   exists. So, it must be the case that 

),(lim=),(lim yxdyxd
ininn  . Therefore, }{ nx  converges strongly to a common fixed 

point y  of t  and T .  

Theorem 4.7.  Let K  be a nonempty compact convex subset of a CAT(0) space X . Let 
KKt :  and )(: KCBKT   be a single-valued and a multivalued nonexpansive 

mappings, respectively, and ),( TtF  satisfying }{= wTw  for all ),( TtFw . 

Moreover, pair t  and T  satisfies condition )(A . If sequences }{ nx , }{ n  and }{ n  are 

defined as in (2) and (3) respectively, then }{ nx  converges strongly to some common fixed point 

of t  and T .  

Proof.  First, we show that ),( TtF  is closed. Let }{ nx  be a sequence in ),( TtF  converging 

to some point Kz . Since  

 ),(=),( tztxdtzxd nn  

 ),,( zxd n  

we have 

 0.=),(limsup),(limsup zxdtzxd nn
n

  

By uniqueness of the limit, we have ztz = . Also,  

 ),(),( TzTxHTzxd nn   

 .  0),(  naszxd n  

This implies that nx  converges to some point in Tz  and hence ).,( TtFz  By Lemma 3.1, 

),(lim pxd n
n 

 exists for all )(TFp  and let us take to be c . If 0=c , then there is nothing 

to prove. If 0>c , then in view of Equation (3.3) ),( allfor TtFp , we have  

 ),,(),( 1 pxdpxd nn   

so that  
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 ),,(inf),(inf
)(

1
),(

pxdpxd n
TFp

n
TtFp 




  

which amounts to say that  

 ))(,())(,( 1 TFxdTFxd nn   

and hence )),(,(lim TtFxd n
n 

 exists. Owing to Condition )(A  there exists a nondecreasing 

function f  such that  

 0=),(lim))),(,((lim nn
n

n
n

txxdTtFxdf


  

or,  

 0=),(lim),(lim))),(,((lim nn
n

nn
n

n
n

zxdTxxdTtFxdf


  

so that in both the cases 0.=))),(,((lim TtFxdf n
n 

 Since, f  is a nondecreasing function and 

0=(0)f , therefore 0.=)),(,(lim TtFxd n
n 

 

This implies that there exists a subsequence }{
knx  of }{ nx  such that  

 1k allfor  
2

1
),( 

kkkn pxd  

wherein }{ kp  is in ),( TtF . By Lemma 3.1, we have  

 ,
2

1
),(),(

1 kkknkkn pxdpxd 


 

so that  

 ),(),(),(
1111 kknknkkk pxdxpdppd
   

 ,
2

1
<

2

1

2

1
11  

kkk
 

which implies that }{ kp  is a Cauchy sequence. Since ),( TtF  is closed, therefore }{ kp  is a 

convergent sequence. Write .=lim ppk
k 

 Now, in order to show that }{ nx  converges to p  

lets proceed as follows:  

 ,  0),(),(),(  kasppdpxdpxd kkknkn  

so that that 0.=),(lim pxd
kn

k 
 Since ),(lim pxd n

n 
 exists, therefore .pxn   
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1. Introduction 
The continuous wavelet transform of a function  ݂߳  ܮଶሺԹௗሻ  with respect to ߰ ߳  ܮଶሺԹௗሻ  is 
defined by 
               ൫ టܹ݂൯ሺݏ, ሻݐ ൌ ൏ ݂, ௧ܶܦ௦߰ ൐  ,    ሺݏ, ሻ ߳ Γݐ ൌ׷ ሼሺݏ, :ሻݐ ݏ ൐ 0,   ,Թௗሽ ߳ ݐ
Where ܦ௦ and ௧ܶ are respectively the dilation and translation operators defined by  

          ሺܦ௦߰ሻሺݔሻ ൌ ݏ 
ିௗ

ଶൗ  ߰ሺିݏଵݔሻ   and ሺ ௧ܶ߰ሻሺݔሻ ൌ  ߰ሺݔ െ  .ሻݐ
Let  ߰ଵ , ߰ଶ ߳ ܮଶሺԹௗሻ be such that  

టభ ,టమ ൌܥ     ׬  ߰ଵ ሺܽ߱ሻ ෣   ߰ଶሺܽ߱ሻ෣ ଵ

௔
݀ܽ

ା∞
଴     

is a non-zero constant for ߱ ് 0. Therefore we have  

  ݂ሺݔሻ ൌ ଵିܥ 
టభ ,టమ ׭ ൫ టܹభ ݂൯ሺܽ, ܾሻሺ ௕ܶܦ௔߰ଶሻሺݔሻ ௗ௔ௗ௕

௔೏శభ  ,
Γ

 (1.1) 

Where the convergence is in  ܮଶሺԹௗሻ sense. The continuous wavelet transform was extended to 
 ௣ሺԹௗሻ [9]. The convergence of Riemann sums of the inverse windowed Fourier transform wasܮ
studied in [3, 10, 12]. The approximation of the integral (1.1) using Riemann sums was studied in 
[7, 11]. 
Setting ܽ ൐ ݁ ൒ 1  and  ܾ ൐ 0 , we  define the operator ܵ௔,௕,௘;టభ ,టమ   as  

  ܵ௔,௕,௘;టభ ,టమ ݂ ൌ  
௕೏ሺ௔೏ି ௘ሻ

ௗ௔
೏

మൗ ஼ഗభ ,ഗమ 

 ∑ ൏ ݂, ௧ܶೕ,ೖ
௦ೕ௝ఢ௓,௞ఢԺ೏ܦ ߰ଵ ൐ ௧ܶೕ,ೖ

௦ೕܦ
߰ଶ  ,  (1.2) 

Where ൫ݏ௝, ௝,௞ܧ ߳ ௝,௞൯ݐ ؔ ቂܽ௝ିଵ
ଶൗ , ܽ௝ାଵ

ଶൗ ቁ ൈ ܽ௝ܾ ቀ݇ ൅ ൣ ିଵ
ଶൗ , 1

2ൗ ൯
ௗ

 ቁ.  

It can be easily seen that ܵ௔,௕,௘;టభ ,టమ ݂ can be viewed as a Riemann sum of the integral in (1.1) with 

respect to the Haar measure 
ௗ௔ௗ௕

௔೏శభ  on Γ. 

In this paper, we study the convergence of ܵ௔,௕,௘;టభ ,టమ  in ࣜ൫ܮ௣ሺԹௗሻ൯   by using 
Calderón–Zygmund operators, where  ࣜ൫ܮ௣ሺԹௗሻ൯ is the space of all bounded linear operators on 
,௣ሺԹௗሻܮ 1 ൏ ݌ ൏ ∞  . We show that it tends to the identity operator for all 1 ൏ ݌ ൏ ∞  provided 
߰ଵ  and ߰ଶ  satisfies certain smoothness and decay conditions. We also investigate the 
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convergence of ܵ௔,௕,௘;టభ ,టమ  as operators from Hardy space ܪଵሺԹௗሻ to ܮଵሺԹௗሻ and also from 
their respective duals  
 ሺԹௗሻ respectivelyܱܯܤ ሺԹௗሻ  to∞ܮ
. 
2.  Definitions, Notations and preliminary results 
Notation 2.1. We use the following set of multi index: 

ߙ ൌ ሺߙଵ, ,ଶߙ … , ,ௗሻߙ |ߙ| ൌ ଵߙ  ൅ ߙଶ ൅ ڮ ൅ ,ௗߙ !ߙ ൌ … !ଶߙ !ଵߙ  ,!ௗߙ

ఈݔ ൌ ଵݔ 
ఈభ ௗݔ … 

ఈ೏ ,     ሺܺఈ݂ሻሺݔሻ ൌ ,ሻݔఈ ݂ሺݔ  ሺ߲ఈ݂ሻሺݔሻ ൌ  
߲|ఈ|

ଵݔ߲
ఈభ    … ௗݔ߲ 

ఈ೏
݂ሺݔሻ 

Also, for ܽ ߳ Թ,  .ܽ denotes the greatest integer less than or equal to ۂܽہ
Definition 2.2. [2] The Banach space  ଵ࣠ሺԹௗሻ  defined by 

ଵ࣠ሺԹௗሻ ൌ ൛݂ ߳ ܮଶሺԹௗሻ ׷  ఝܹ݂, ௙ܹ߮  ߳ ܮଵሺΓሻൟ, 

Where ߮ሺݔሻ ൌ  ൫߲ଶ
௫భ ൅ … ൅ ߲ଶ

௫೏
൯

ௗ
݁ିగ௫మ

 is a fixed function and 

௣ሺΓሻܮ ൌ ቊ߶ ׷ ห|߶|ห ൌ  ቀ׭ |߶ሺݑ, ሻ|௣ݒ ௗ௨ௗ௩

௨೏శభΓ
ቁ

ଵ ௣ൗ
൏  ∞ቋ. 

Definition 2.3.[9]We call ܭሺݔ, ௞ܥ ሻ a Calderon – Zygmund Kernel if there exists constantsݕ ൐ 0 
and 0 ൏ ߜ ൑ 1 such that for any ሺݔ, ሻ ߳ Թௗݕ ൈ Թௗ with ݔ ്  we have  ,ݕ

,ݔሺܭ| |ሻݕ ൑
௞ܥ

ݔ| െ ௗ|ݕ

′

                                                                                                                       ሺ2.3.1ሻ 

หܭሺݔ, ሻݕ െ ,ݔሺܭ  ሻห′ݕ ൑
ݕ௞หܥ െ ห′ݕ

ఋ

ݔ| െ ௗାఋ|ݕ ,    หݕ െ ห′ݕ ൑
1
2

ݔ| െ  ሺ2.3.2ሻ                                                 ,|ݕ

หܭሺݔ, ሻݕ െ ,ݔሺܭ  ሻห′ݕ ൑
ݔ௞หܥ െ ݔ ′ห

ఋ

ݔ| െ ௗାఋ|ݕ ,    หݔ െ ݔ ′ห ൑
1
2

ݔ| െ  ሺ2.3.3ሻ                                                 ,|ݕ

Definition 2.4. We call ܶ a Calderon –Zygmund operator if  
(i) ܶ is a bounded operator on ܮଶሺԹௗሻ,   
(ii) there exists a Calderon- Zygmund kernel ܭሺݔ,  ሻ such that for any compactly supportedݕ
 ,ଶሺԹௗሻܮ ߳ ݂

ሺ݂ܶሻሺݔሻ ൌ  න ,ݔሺܭ .ሺ݂ሻ݌݌ݑݏ\Թௗ ߳ ݔ                     ,ݕሻ݀ݕሻ݂ሺݕ

Թ೏

 

It is well known fact that a Calderon –Zygmund operator is bounded from  ܮଵሺԹௗሻ to the weak  
 .ଵሺԹௗሻ . Here,  we state the following result which can be proved by standard methodܮ
Proposition 2.5. [5, Theorem 8.2.1] Let ܶ  be a Calderon- Zygmund operator with kernel 
satisfying (2.3.1), (2.3.2)  and (2.3.3).Then ܶ  is a bounded operator from  ܮଵሺԹௗሻ   to  
ଵܮ

௪௘௔௞ሺԹௗሻ and 

 ||ܶ||௅భ՜௅భ
ೢ೐ೌೖ

 ൑ ߠ
ௗ

ଶൗ ||ܶ||௅మ՜௅మ ൅ ߠ  ఋ,  for allܥ௞ܥఋିߠ ൐ 2݀
ଵ

ଶൗ ൅ 1,                                         

  where ܥఋ ൌ ݀
ఋ

ଶൗ ሺ3
2ൗ ሻௗାఋ ׬ Թ೏\ሾିଵ,ଵሿ೏.ݑௗିఋ݀ି|ݑ|   

The property of Calderon – Zygmund operators which is used in this paper is that they are bounded 
from ܪଵሺԹௗሻ  to  ܮଵሺԹௗሻ. We state the result without proof. 
Proposition 2.6. Let ܶ be a Calderon- Zygmund operator with kernel satisfying (2.3.1), (2.3.2)  
and (2.3.3).Then ܶ is a bounded operator from  ܪଵሺԹௗሻ  to ܮଵሺԹௗሻ and 
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||ܶ||ுభ՜௅భ  ൑ ߠ
ௗ

ଶൗ ||ܶ||௅మ՜௅మ ൅ ,ఋܥ௞ܥఋିߠ ߠ ݈݈ܽ  ݎ݋݂ ൐ 2݀
ଵ

ଶൗ ൅ 1, 

where ܥఋ ൌ ݀
ఋ

ଶൗ ሺ3
2ൗ ሻௗାఋ ׬ Թ೏\ሾିଵ,ଵሿ೏.ݑௗିఋ݀ି|ݑ|  

The following result is also  useful which is known as  Marcinkiewicz interpolation theorem. 
Here we state it with an explicit estimation on the operator bound. 
Proposition 2.7. [4, Theorem 1.3.2]. If an operator ܶ satisfies the following two conditions, 

||݂ܶ||௅೛భೢ೐ೌೖ
൑ ଵ||݂||௅೛భܥ ,    ||݂ܶ||௅೛మೢ೐ೌೖ

൑ ଶ||݂||௅೛మܥ ,  

Where 1 ൑ ଵ݌ ൑ ଶ, then for 0݌ ൏ ݐ ൏ 1, 1 ൗ݌ ൌ ሺ1 െ ሻݐ
ଵ݌

ൗ ൅ ݐ ଶൗ݌ ,  we have  

||݂ܶ||௅೛ ൑ ଵܥܯ
ଵି௧ܥଶ

௧||݂||௅೛, where ܯ ൌ 2ሺ݌ ሺ݌ െ ଵሻ݌  ൅ ݌ ሺ݌ଶ െ ⁄⁄ሻሻ݌
ଵ ௣ൗ . 

The following result shows that for wavelet functions from ଵ࣠ሺԹௗሻ, the operators  ܵ௔,௕,௘;టభ ,టమ   
converge to the the identity operator in ࣜ൫ܮଶሺԹௗሻ൯. 
Proposition 2.8. [7, Theorem 4.2]. Let ߰ଵ, ߰ଶ  ߳  ଵ࣠ሺԹௗሻ   be such that ܥటభ,టమ ് 0. Then  
ܵ௔,௕,௘;టభ ,టమ  is well defined on Թௗ and  

lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅మ ՜௅మ ܫ   ൌ 0. 

Now the following auxiliary result gives the sufficient condition for ݂ ߳ ଵ࣠ሺԹௗሻ. 

Proposition 2.9. [13, Theorem 3.5] Set ݊଴ ൌ  ቔ݀
2ൗ ቕ ൅ 1. Let ߚ and ߛ are positive constants such 

that ݀
2ൗ ൏ ߛ ൑ ݀ and 1

ൗߚ ൅ 1 ሺ2ߛሻൗ ൏  1
݀ൗ .  Suppose ݂ satisfy the following conditions, 

 (i) |ሺ߲ఈ݂ሻሺݔሻ| ൑ ܥ
ሺ1 ൅ ሻఉൗ|ݔ| |ߙ|   , ൑ ݊଴ െ 1,  

(ii) |݂ െ ∑ ሺ߲ఈ݂ሻሺݐሻሺݔ െ !ߙ/ሻఈݐ |  ൑ ݔ|ܥ െ ఊ|ݐ
|ఈ|ஸ௡బିଵ ߛ ,  ൐ ݀

2ൗ , 

(iii)׬ ݔሻ݀ݔఈ݂ሺݔ ൌ 0, Թ೏ ݎ݁ݒ݄݁݊݁ݓ |ߙ| ൑ ݊଴ െ 1, 
        Then  ݂ ߳ ଵ࣠ሺԹௗሻ. 
 
2. Main Result 
Theorem 3.1. Let ܵ௔,௕,௘;టభ ,టమ  be defined as in (1.2).  If ߰ଵ  and  ߰ଶ  are functions on Թௗ 
satistying the following conditions, 
(i) |ሺ߲ఈ߰௜ ሻሺݔሻ| ൑ ܥ

ሺ1 ൅ ሻఉൗ|ݔ| |ߙ|   , ൑ ݊଴ െ 1,  

(ii) |߰௜ െ ∑ ሺ߲ఈ߰௜ ሻሺݐሻሺݔ െ !ߙ/ሻఈݐ |  ൑ ݔ|ܥ െ ఊ|ݐ
|ఈ|ஸ௡బିଵ  , and 

(iii)׬ ݔሻ݀ݔఈ߰௜ሺݔ ൌ 0, Թ೏ ݎ݁ݒ݄݁݊݁ݓ |ߙ| ൑ ݊଴ െ 1, where ݊଴ ൌ ۂ2/݀ہ  ൅ 1,  are positive ߛ and ߚ

constants such that ݀
2ൗ ൏ ߛ ൑ ݀ and 1

ൗߚ ൅ 1 ሺ2ߛሻൗ ൏  1
݀ൗ . 

     Then we have  
  limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൌ 0,      1 ൏ ݌ ൏ ∞, 3.1.1

  limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅భ ՜௅భ ܫ  
ೢ೐ೌೖ

ൌ 0, 3.1.2 

  limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|ுభ ՜௅భ ܫ   ൌ 0, 3.1.3 

  limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅∞ ՜஻ெை ܫ   ൌ 0, 3.1.4 
Where ܫ  stands for corresponding embedding  mapping. 
Proof of theorem 3.1. We first show that ܵ௔,௕,௘;టభ ,టమ   is well defined on ܮ௣ሺԹௗሻ. For that, a 
standard method is to prove that it is a bounded linear operator on ܮଶሺԹௗሻ and related to some  
Calderon – Zygmund kernel. For ܵ௔,௕,௘;టభ ,టమ  , it is sufficient to show that  
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,ݔሺܭ   ሻݕ ൌ  
௕೏൫௔೏ି ௘൯

ௗ௔
೏

మൗ ஼ഗభ ,ഗమ 

 ∑ ሺ ௧ܶೕ,ೖ
௦ೕ௝ఢ௓,௞ఢԺ೏ܦ ߰ଶሺݔሻሻ ቀ ௧ܶണ,ೖ

௦ണ߰ଵቁܦ ሺݕሻ
തതതതതതതതതതതതതതതതതതതത

 3.1.5 

Is a Calderon- Zygmund  kernel. 
We need some lemmas for the proof of main result. 

Lemma 3.2.  Let ߰ଵ and  ߰ଶ are functions on Թௗ such that  |߰௜ሺݔሻ| ൑
஼

ሺଵା|௫|ሻ೏శഄ   and 

|߰௜ሺݔሻ െ ߰௜ሺݕሻ| ൑ ݔ|ܥ െ ݅   , జ|ݕ ൌ 1, 2,  where ߛ  and ߝ  are constants, 0 ൏ ߭ ൑ 1  and ߝ ൐ 0 . 
Define 

,ݔሺܭ   ሻݕ ൌ  
௕೏൫௔೏ି ௘൯

ௗ௔
೏

మൗ ஼ഗభ ,ഗమ 

 ∑ ௝߱,௞ሺ ௧ܶೕ,ೖ
௦ೕ௝ఢ௓,௞ఢԺ೏ܦ ߰ଶሻሺݔሻ ቀ ௧ܶണ,ೖ

௦ണ߰ଵቁܦ ሺݕሻ
തതതതതതതതതതതതതതതതതതതത

,   3.1.6 

Where ௝߱,௞  assumes values -1, 0, 1. Then ܭሺݔ,  ሻ  is a Calderon-Zygmund kernel with constantݕ

௞ܥ   ൌ
௕೏൫௔೏ି ௘൯

ௗ௔
೏

మൗ  |஼ഗభ ,ഗమ |
 

ۉ

ۈ
ۇ

ቀ2 ൅ ܽ
ଵ

ଶൗ ቁ
ௗ

ఌܥଶܥ ቆ
௔

ఱ೏
మൗ

௔೏ି௘
൅

ଶ೏శభశഄ௔೏శഄ
మൗ

௔ഄି௘
ቇ

൅ሺ1 ൅ 2ௗାజఎሻܥఊ,ఌ,ఎ ቆ
௔

ఱሺ೏శഔആሻ
మൗ

௔೏శഔആି௘
൅

௔ሺ೏శഔആሻ మశሺ೏శഄሻሺభషആሻ/మ⁄

௔ሺ೏శഄሻሺభషആሻషሺ೏శഔആሻି௘
ቇ

ی

ۋ
ۊ

 3.1.7 

and ߜ ൌ ߟ where ,ߟ߭ ൌ ߝ ൫2ሺ݀ ൅ ߭ ൅ ⁄.ሻ൯ߝ  
The above result can be proved with the standard method for convergence and basic properties of 
orthonormal wavelets (see[1,6]). 
For the boundedness of the above operator, we have the following lemma. 

Lemma 3.3. Let ߰ଵ and  ߰ଶ are functions on Թௗ such that  |߰௜ሺݔሻ| ൑
஼

ሺଵା|௫|ሻ೏శഄ   and 

|߰௜ሺݔሻ െ ߰௜ሺݕሻ| ൑ ݔ|ܥ െ ݅   , జ|ݕ ൌ 1, 2,  where ߭  and ߝ  are constants, 0 ൏ ߭ ൑ 1  and ߝ ൐ 0 .        
Let  
ܵ௔,௕,௘;టభ ,టమ   be defined as in (1.2). If ܵ௔,௕,௘;టభ ,టమ   is well defined on ܮଶሺԹௗሻ and 

limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅మ ՜௅మ ܫ   ൌ 0, then  ܵ௔,௕,௘;టభ ,టమ   is well defined on  ܮ௣ሺԹௗሻ and  

lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൌ 0,      1 ൏ ݌ ൏ ∞, 

Proof of Lemma 3.3. Let ܭሺݔ, ሻݕ   be defined by  (3.1.5). By lemma (3.2) , ,ݔሺܭ ሻݕ   is a 
Calderon- Zygmund kernel i.e;  ܭሺݔ,  ௞ is givenܥ ሻ   satisfies (2.3.1), (2.3.2) and (2.3.3), whereݕ
by (3.1.7), ߜ ൌ ߟ߭ , and  ߟ ൌ ߝ ൫2ሺ݀ ൅ ߭ ൅ ⁄.ሻ൯ߝ  It is clear that ܥ௞ ൏ ∞ . Consequently 

ܵ௔,௕,௘;టభ ,టమ  , and therefore ܵ௔,௕,௘;టభ ,టమ  –  are Calderon – Zygmund operators with the same ,ܫ  
kernel.  
As , 
limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅మ ՜௅మ ܫ   ൌ 0,  for any 0 ൏ ߣ ൏ 1 , there exists constants ܽ଴ and 
ܾ଴ such that for any 1 ൏ ܽ ൏ ܽ଴, 0 ൏ ܾ ൏ ܾ଴ , we have  

|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅మ ՜௅మ ܫ   ൑ ߣ ൏ 1. 
Using proposition (2.5), we have  

limሺ௔,௕ሻ՜ሺଵ,଴ሻ |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅భ ՜௅భ ܫ  
ೢ೐ೌೖ

൑ ఋܯ  ఋ,  whereܯ ൌ 2
ௗ

ଶൗ ାଶ௘ߠ
ௗ

ଶൗ ൅  .ఋܥ௞ܥఋିߠ4
By using proposition (2.7), we have 

  |ห ܵ௔,௕,௘;టభ ,టమ  ݂ –   ݂ ห|௅೛ ൑ ఋܯܯ
ଶ

௣ିଵൗ ଶିଶߣ ௣ൗ ||݂||௅೛, 1 ൏ ݌ ൏ 2, 

where ܯ ൌ 2ሺ݌ ሺ݌ െ ଵሻ݌ ൅ ݌ ሺ݌ଶ െ ⁄⁄ሻ݌ ሻ
ଵ ௣ൗ . Therefore  

  |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൑  ܯܯఋ
ଶ

௣ିଵൗ ଶିଶߣ ௣ൗ  ,   1 ൏ ܽ ൏  ܽ଴ , 0 ൏ ܾ ൏  ܾ଴. 
Also for  1 ൏ ܽ ൏  ܽ଴ , 0 ൏ ܾ ൏  ܾ଴, ఋܯ ݌ݑܵ ൏ ∞ .  Therefore, we have 
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lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൌ 0,   1 ൏ ݌ ൏ 2. 

Next, we have consider the case of 2 ൏ ݌ ൏ ∞ . For that, we consider the adjoint of  

ܵ௔,௕,௘;టభ ,టమ  – ܫ   . It is clear that ൫ܵכ
௔,௕,௘;టభ ,టమ  ݄൯ሺݕሻ ൌ ׬ ,ݔሺܭ ሻݕ

Թ೏ ݄ሺݔሻ݀ݔ , where  ܭሺݔ,  ሻ isݕ
also a Calderón-Zygmund kernel and hence,  ܵכ

௔,௕,௘;టభ ,టమ   is a Calderón-Zygmund operator. By 
using similar arguments, we have  

lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵכ
௔,௕,௘;టభ ,టమ  – ห|௅೜ ՜௅೜ ܫ   ൌ 0,   1 ൏ ݌ ൏ 2. 

On the other hand, it is known that  

lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൌ lim
ሺ௔,௕ሻ՜ሺଵ,଴ሻ

|ห ܵכ
௔,௕,௘;టభ ,టమ  – ห|௅೜ ՜௅೜ ܫ    ,

1
݌

൅
1
ݍ

ൌ 1, 

Thus we have 
lim

ሺ௔,௕ሻ՜ሺଵ,଴ሻ
|ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅೛ ՜௅೛ ܫ   ൌ 0,   2 ൏ ݌ ൏ ∞. 

Now we need to show the convergence of ܵ௔,௕,௘;టభ ,టమ   in ࣜ൫ܮଶሺԹௗሻ൯, for which it suffices to 
prove that ߰ଵ , ߰ଶ  ߳ ଵ࣠ሺԹௗሻ . By proposition (2.8), it is clear that the wavelet functions from 

ଵ࣠ሺԹௗሻ , the operators  ܵ௔,௕,௘;టభ ,టమ  converge to the identity operator in ࣜ൫ܮଶሺԹௗሻ൯. Also by the 
virtue of propostion (2.9), it is clear that ߰ଵ , ߰ଶ  ߳ ଵ࣠ሺԹௗሻ. This completes the proof of  (3.1.1). 
         Now we proceed to prove (3.1.2). By proposition (2.5), we have 

|หܵ௔,௕,௘;టభ ,టమ  – ห|௅భ՜௅భܫ  
ೢ೐ೌೖ

 ൑ 2
ௗ

ଶൗ ାଶߠ
ௗ

ଶൗ |หܵ௔,௕,௘;టభ ,టమ  – ห|௅మ՜௅మܫ   ൅
ଵܯ

ఋߠ , 

Where ߠ ൐ 2݀
ଵ

ଶൗ ൅ 1 is an arbitrary constant and 

ଵܯ     ൌ ଵழ௔ழଶ,଴ழ௕ழଵ݌ݑܵ
ସ஼ೖௗ

ഃ
మൗ  ଷ೏శഃ

ଶ೏శഃ ׬ 
ௗ௨

|௨|೏శഃԹ೏\ሾିଵ,ଵሿ೏ ൏ ∞. 

For any ߝ ൐ 0, we can find some ߠ଴ ൐ 2݀
ଵ

ଶൗ ൅ 1 such that   ܯଵ ൏
ఌ ఏబ

ഃ

ଶ
. 

On the other hand, we can see from (3.1.1) that there exists some 1 ൏ ܽ଴ ൏ 2  and 0 ൏ ܾ଴ ൏ 1 
such that  |ห ܵ௔,௕,௘;టభ ,టమ  – ห|௅మ ՜௅మ ܫ   ൏  

ఌ

ଶ
೏

మൗ శయ ఏబ
೏

మൗ
 , 1 ൏ ܽ ൏ ܽ଴, 0 ൏ ܾ ൏ ܾ଴. 

Hence |หܵ௔,௕,௘;టభ ,టమ  – ห|௅భ՜௅భܫ  
ೢ೐ೌೖ

൏ ,ߝ  1 ൏ ܽ ൏ ܽ଴, 0 ൏ ܾ ൏ ܾ଴ . 
This proves (3.1.2). 
Now (3.1.3) can be proved similarly as that of (3.1.2) by using proposition (2.6). 
Also, (3.1.4) is the immediate consequence of (3.1.3) because ܱܯܤ and ܮ∞ are the duals of ܪଵ 
and ܮଵ respectively. 
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1.  Introduction 
During 1982, Hamilton [12] made the fundamental observation that Ricci flow is an excellent tool 
for simplifying the structure of the manifold. It is a process which deforms the metric of a 
Riemannian manifold analogous to the diffusion of heat there by smoothing out the irregularity in 
the metric. It is given by 

డ௚

డ௧
 = െ2ܴ݅ܿ݃, 

where ݃ is a Riemannian metric. ܴ݅ܿ݃ is the Ricci curvature tensor, ݐ is time. 
Ricci solitons move under the Ricci flow simply by diffeomorphisms of the initial metric that is 
they are stationary points of the Ricci flow in space of metrics of ߮௧: ܯ ՜  Here the metric .ܯ 
݃ሺݐሻ is the pull back of the initial metric ݃ሺ0ሻ by a 1-parameter family of diffeomorphisms ሺݐሻ 
generated by a vector field on a manifold ܯ. 
A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian manifold 
ሺܯ, ݃ሻ. A Ricci soliton is a triple ሺ݃, ܸ,  ߣ ሻ with ݃ a Riemannian metric, ܸ is a vector field andߣ
is a real scalar such that  
௏݃ ൅ܮ     2ܵ ൅ ൌ ݃ߣ2   0,  (1.1) 

Where ܵ is a Ricci tensor of ܯ and ܮ௏denotes the Lie derivative operator along the vector field 
 ,is negative ߣ is constant. A Ricci soliton is said to be shrinking, steady and expanding when ߣ ,ܸ
zero and positive respectively. 
Let ሺܯ, ݃ሻ be an n-dimensional differentiable manifold of class C∞ . We denote  ׏  by its 
Levi-Civita connection. We define endomorphisms ܴሺܺ, ܻሻ and ܺ ר  ܻ by 
  ܴሺܺ, ܻሻܼ ൌ ܼ ௒ߘ ௑ߘ  െ ߘ௑ ߘ௒ ܼ െ ߘሾ௑,௒ሿܼ,  (1.2) 
  ሺܺ  ר  ܻሻ ܼ ൌ  ݃ሺܻ, ܼሻܺ –  ݃ሺܺ, ܼሻܻ,  (1.3) 
respectively, where ܺ, ܻ, א ܼ  ߯ሺܯሻ, ߯ሺܯሻ being the Lie algebra of vector fields on ܯ. The 
Riemannian Christoffel curvature tensor ܴ is defined by 
ܴሺܺ, ܻ, ܼ, ܹሻ ൌ ݃ሺܴሺܺ, ܻሻܼ, ܹሻ,     ܹ א  ߯ሺܯሻ. Let ܵ and ݎ denote the Ricci tensor and scalar 
curvature of ܯ respectively. The Ricci operator ܳ is defined by ݃ሺܳܺ, ܻሻ  ൌ  ܵሺܺ, ܻሻ. 
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We define the tensors ܴ · ܵ and ܳሺ݃, ܵሻ by 
  ሺܴሺܺ, ܻሻ ·  ܵሻ ሺ ଵܺ, ܺଶሻ  ൌ  െܵሺܴሺܺ, ܻሻ ଵܺ,  ܺଶሻ –  ܵሺ ଵܺ, ܴሺܺ, ܻሻܺଶሻ, 
  ܳሺ݃, ܵሻ ሺ ଵܺ, ܺଶ;  ܺ, ܻሻ  ൌ  െܵሺሺܺ ר  ܻሻ ଵܺ,  ܺଶሻ –  ܵሺ ଵܺ, ሺܺ ר  ܻሻܺଶሻ, 
respectively, where ଵܺ,  ܺଶ, ܺ, א ܻ  ߯ሺܯሻ. 
A Riemannian manifold satisfying ܴ · ܵ ൌ  0 is called Ricci-semisymmetric. Where ܵ  is the 
Ricci tensor. If the tensors ܴ · ܵ  and ܳሺ݃, ܵሻ are linearly dependent then ܯ  is called Ricci- 
pseudosymmetric. This is equivalent to  
  ܴ · ܵ ൌ ,ௌ ܳሺ݃ܮ  ܵሻ, 
holding on the set ௌܷ ൌ  ሼא ݔ ܯ  ׷  ܵ ്  

௥

௡
ௌ is some function onܮ ሽ, whereݔ ݐܽ ݃  ௌܷ. 

The study of Ricci solitons in contact geometry were initiated by Sharma [23] and Tripathi [25]. 
Later the study was extended by Calinet. al. [6], Bagewadi et. al. ([16], [2]), Debnath et. al. [9], 
Chandra et. al. [7], Lorentzian ߙ-Sasakian, Trans-Sasakian,ሺܵܥܮሻ௡ and almost ܥሺߙሻmanifolds 
using Eisenhart problem [10]. The authors Ashoka et. al. ([1], [4]) and Nagaraja et. al. [18] studied 
Ricci solitons in ሺܵܥܮሻ௡ , Kenmostu manifolds using semi-symmetric and Ricci-semisymmetric 
conditions on different curvature tensors.  
The notion of local symmetry has been weakened by many authors in several ways to different 
extent. As a weaker version of local symmetry, Takahashi [24] introduced the notion of   ߮- 
symmetry on a Sasakian manifold. Generalizing the notion of ߮  -symmetry, De et. al. [8] 
introduced the notion of ߮ -recurrent Sasakian manifold. In the context of contact geometry, the 
notion of    ߮ -symmetry is introduced and studied by Boeckx et. al. [5] with several examples. 
The study of generalized ߮ -recurrent Sasakian manifolds was initiated by Oubina et. al. [19] and 
further it has been carried out by the authors Bagewadi et. al. ([26], [27]), Jun et. al. [17], Patilet. al. 
[20], Prakasha et. al.([21], [22]) and many others. 
Motivated by the above studies, in this paper we study Ricci soltions in Kenmotsu manifolds when 
concircular curvature tensor satisfies Ricci-semisymmetric, Ricci- pseudosymmetric, locally 
߮-symmetric,  ߮-recurrent, generalized ߮-recurrent conditions. 
 
2.   Preliminaries 
Let ܯ  be a ݊ -dimensional almost contact Reimannaian manifold with structure 
tensorsሺ߮, ,ߦ , ߟ ݃ሻ. where߮ is a (1,1) tensor field, ߦ is the structure vector field, ߟ is a 1-form and 
݃ is a Riemannian metric. It is well known that ሺ߮, ,ߦ , ߟ ݃ሻ structure satisfies the following 
conditions: 
ሻߦሺߟ    ൌ ഷ ߮ ൌ   ߟ     ,1  ൌ ߦ ߮        ,0   0,  (2.1)
  ߮ଶܺ ൌ  െܺ ൅ ,ሺܺ݃    ,ߦሺܺሻߟ  ሻߦ ൌ ሺܺሻ,   (2.2)ߟ 
  ݃ሺ߮ܺ , ܻ߮ሻ  ൌ  ݃ሺܺ , ܻሻ –           ሺܻሻ,  (2.3)ߟ ሺܺሻߟ 
for all vector fields  ܺ, ܻ on  ܯ.  If moreover 
  ሺߘ௑߮ሻܻ  ൌ  ݃ሺ߮ܺ , ܻሻߦ – ሺܻሻ ߮ܺ,  (2.4)ߟ 
ൌ ߦ௑ߘ   ܺ –  (2.5)  ,ߦሺܺሻߟ 
where ׏  denotes the Riemannian connection of ݃  hold, then ( , ௡ܯ ߮ , , ߦ ,ߟ ݃ሻ  is called 
Kenmotsu manifold.   
In Kenmotsu manifold, the following relations hold: 
  ሺߘ௑ߟሻܻ  ൌ  ݃ሺ߮ܺ , ܻ߮ሻ ൌ  ݃ሺܺ, ܻሻ – ሺܻሻ. (2.6)ߟሺܺሻߟ 
   ܴ ሺܺ , ܻሻܼሻ ൌ , ሺܻሻ݃ሺܺߟ  ܼሻ – , ሺܺሻ ݃ሺܻߟ  ܼሻ.   (2.7)  
 From (2.7), it easily follows that 
  ܴሺܺ , ܻሻߦ ൌ – ሺܺሻܻߟ   ሺܻሻܺ,  (2.8)ߟ
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  ܴሺߦ , ܺሻܻ ൌ – ሺܻሻܺߟ   ݃ሺܺ , ܻሻ(2.9)     ,ߦ
   ܵሺܺ, ሻߦ  ൌ  െ ሺ݊ െ 1ሻߟሺܺሻ,   (2.10) 
  ܵሺ߮ܺ, ܻ߮ሻ  ൌ  ܵሺܺ, ܻሻ ൅ ሺ݊ െ 1ሻߟሺܺሻߟሺܻሻ,  (2.11)                   
for any vector fields ܺ, ܻ, ܼ, where ܴ is the Riemannian curvature tensor and ܵ is the Ricci 
tensor. 
Let ሺ݃, ,ߦ  From (2.5) we have .ܯ ሻbe a Ricci solition in an ݊-dimensional Kenmotsu manifoldߣ
  ሺܮక݃ሻሺܺ, ܻሻ  ൌ 2ሾ݃ሺܺ, ܻሻ െ  ሺܻሻሿ.  (2.12)ߟሺܺሻߟ
From (1.1) and (2.12) we have 
  Sሺܺ, ܻሻ ൌ ߣሺܻሻ – ሺߟሺܺሻߟ  ൅ 1ሻ݃ሺܺ, ܻሻ.  (2.13) 
The above equation yields 
  ܳܺ ൌ ߣሺ – ߦሺܺሻߟ  ൅ 1ሻܺ,  (2.14)
  ܵሺܺ, ሻߦ  ൌ  െߟߣሺܺሻ, (2.15)
ൌ ݎ    െ݊ߣ – ሺ݊ െ 1ሻ, (2.16) 
Where ܵ is the Ricci tensor, ܳ is the Ricci operator and ݎ is the scalar curvature on ܯ. 
Definition 2.1.  A Kenmotsu manifold is said to be locally ߮-symmatric if 
          ߮ଶሺሺ׏ௐܥሻሺܺ, ܻሻܼሻ  ൌ  0, (2.17) 
for all vector fields ܺ, ܻ, ܼ, ܹ orthogonal to ߦ. 
Definition 2.2. A Kenmotsu manifold is said to be locally concircularly ߮-symmetric  
  ߮ଶሺሺ׏ௐܥሻሺܺ, ܻሻܼሻ  ൌ  0, (2.18) 
for all vector fields ܺ, ܻ, ܼ, ܹ orthogonal to ߦ. 
Definition 2.3. A Kenmotsu manifold is said to be concircularly ߮-recurrent manifold if there 
exists a non-zero 1-form A such that  
  ߮ଶሺሺ׏ௐܥሻሺܺ, ܻሻܼሻ  ൌ ,ሺܺܥሺܹሻܣ  ܻሻܼ,   (2.19) 
for all vector fields ܺ, ܻ, ܼ, ܹ orthogonal to ߦ. 
Definition 2.4. A Kenmotsu manifold is said to be generalized concircularly ߮-recurrent manifold 
if its curvature tensor ܥ satisfies the relation 
 ߮ଶሺሺߘ௪ܥሻሺܺ, ܻሻܼሻ  ൌ ,ሺܺܥሺܹሻܣ  ܻሻܼ ൅ ,ሺܹሻሼ݃ሺܻܤ ܼሻܺ െ ݃ሺܺ, ܼሻܻሽ,  (2.20) 
Where ܣ and ܤ are 1-forms,  ܤ is non-zero and these are defined by 
ሺܹሻܣ    ൌ  ݃ሺܹ, ,ଵሻߩ ሺܹሻܤ  ൌ  ݃ሺܹ,  ,ଶሻߩ
and ߩଵ ଶߩ ,   are vector fields associated with 1-forms ܣ, ܤ  respectively. Here ܥ  is the 
concircular curvature tensor given by 
,ሺܺܥ   ܻሻܼ ൌ  ܴሺܺ, ܻሻܼ െ

௥

௡ሺ௡ିଵሻ
ሾ݃ሺܻ, ܼሻܺ –  ݃ሺܺ, ܼሻܻ. (2.21) 

Taking ܺ ൌ ,ߦ  ܻ ൌ  ܺ, ܼ ൌ ܻ in (2.21) and using (2.2), (2.8) and (2.9), we obtain  

,ߦሺܥ   ܺሻܻ ൌ ቂ1 െ
௥

௡ሺ௡ିଵሻ
ቃ ሾߟሺܻሻܺ  െ  ݃ሺܺ, ܻሻ(2.22) .ߦ 

,ሺܺܥ   ܻሻߦ  ൌ ቂ1 െ
௥

௡ሺ௡ିଵሻ
ቃ ሾߟሺܺሻܻ –  ሺܻሻܺሿ.  (2.23)ߟ 

3.  Ricci Solitons In Kenmotsu Manifold Satisfying ࡯ · ൌ ࡿ  ,ࢍሺࡽ ࡿࡸ   ሻࡿ
Let us consider an ݊-dimensional Kenmotsu manifold which satisfies the condition 
,ߦሺܥ ܺሻ ·   ܵ ൌ ,ௌ ܳሺ݃ܮ  ܵሻ implies that 
ܵሺܥሺߦ, ܺሻܻ, ܼሻ  ൅  ܵሺܻ, ,ߦሺܥ ܺሻܼሻ  ൌ ר ߦௌሾܵሺሺܮ   ܺሻܻ, ܼሻ  ൅  ܵሺܻ, ሺר ߦ  ܺሻܼሻሿ. (3.1) 
Using (1.3), (2.10), (2.22) in (3.1), we get 

 ቂܮௌ  ൅ 
௥

௡ሺ௡ିଵሻ
ቃ ሾܵሺܺ, ܼሻ ߟሺܻሻ  ൅  ܵሺܻ, ܺሻ ߟሺܼሻ  ൅ ሺ݊ –  1ሻ ߟሺܼሻ ݃ሺܺ, ܻሻ               

  ൅  ሺ݊ –  1ሻ ߟሺܻሻ ݃ሺܺ, ܼሻሿ  ൌ  0. (3.2) 
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If   ܮௌ ൅ ቀ
௥

௡ሺ௡ିଵሻ
ቁ  ്  0 then equation (3.2) reduces to 

ሾܵሺܺ, ܼሻ ߟሺܻሻ  ൅  ܵሺܻ, ܺሻ ߟሺܼሻ  ൅  ሺ݊ –  1ሻ ߟሺܼሻ ݃ሺܺ, ܻሻ  ൅  ሺ݊ –  1ሻ ߟሺܻሻ ݃ሺܺ, ܼሻሿ  ൌ  0.  (3.3) 
Let ܼ ൌ  in (3.3) we have ߦ 
  ܵሺܺ, ܻሻ  ൌ  െሺ݊ –  1ሻ ݃ሺܺ, ܻሻ.  (3.4) 
Taking ܺ ൌ  ܻ ൌ  ݁௜ and summing over ݅ ൌ  1, 2, … … … … . , ݊ in (3.4) we get 
ൌ ݎ    െ݊ሺ݊ –  1ሻ. (3.5) 
In view of (2.16) and (3.5) we obtain 

ൌ ߣ    
ሺ௡ିଵሻమ

௡
. 

Hence we state the following: 
Theorem 3.1. A Ricci soliton in ݊-dimensional Kenmotsu manifold satisfying 

ܥ  ·  ܵ ൌ ,ௌ ܳሺ݃ܮ  ܵሻ is expanding provided ܮௌ ് െ ቀ
௥

௡ሺ௡ିଵሻ
ቁ. 

Let ሺܯ௡, ݃ሻ is a ݊-dimensional Kenmotsu manifold and ሺ݃, ܸ,   ሻ is a Ricci soliton inߣ
ሺܯ௡, ݃ሻ.  If ܸ is a conformal killing vector field, then 
௏݃ ൌܮ    (3.6) .݃ߩ 
From (1.1), we have  

  ܵ ൌ  ሺ݃ߣ ൅  
ଵ

ଶ
 ௏݃ሻ.    (3.7)ܮ

From (3.6) and (3.7), we get 

  ܵሺܺ, ܻሻ  ൌ  ቀߣ ൅ 
ఘ

ଶ
ቁ  ݃ሺܺ, ܻሻ                         (3.8)    

Let ሺܯ௡, ݃ሻ be a Kenmotsu manifold. Then from (3.7), we have 
ܥ   ·  ܵ ൌ  ܵሺܥሺܺ, ܻሻܼ, ܹሻ  ൅  ܵሺܼ, ,ሺܺܥ ܻሻܹሻ. 
ܥ   ·  ܵ ൌ  െ ሺߣ ൅ 

ఘ

ଶ
ሻ ሾ݃ሺܥሺܺ, ܻሻܼ, ܹሻ ൅  ݃ሺܥሺܺ, ܻሻܹ, ܼሻሿ.                (3.9) 

Using (2.21) in (3.9), we get 
ܥ   ·  ܵ ൌ  െ ሺߣ ൅ 

ఘ

ଶ
ሻ ሾܴሺܺ, ܻ, ܼ, ܹሻ ൅  ܴሺܺ, ܻ, ܹ, ܼሻሿ  ൌ  0.  (3.10) 

i. e ሺܯ௡, ݃ሻ is concircular Ricci-semisymmetric. 
Conversely, suppose ܥ ·  ܵ ൌ  0. 
  ܵሺܥሺܺ, ܻሻܼ, ܹሻ  ൅  ܵሺܼ, ,ሺܺܥ ܻሻܹሻ  ൌ  0.                       (3.11)      
Taking ܺ ൌ  ܹ ൌ  in (3.11) and using (2.10), (2.22) and (2.23), we get ߦ 
  ܵሺܻ, ܼሻ  ൌ  െ ሺ݊ –  1ሻ ݃ሺܻ, ܼሻ. 
Substituting this in (1.1), we obtain 
  ሺܮ௏݃ሻ ሺܻ, ܼሻ  ൌ ,ሺܻ݃ ߩ  ܼሻ. 
where ߩ ൌ  2ሺሺ݊ –  1ሻ –  :ሻ i. e ܸ is conformal killing. Thus, we state the followingߣ 
Theorem 3.2. Let ሺ݃, ܸ, ,௡ܯሻ be a Ricci soliton in Kenmotsu manifold ሺߣ ݃ሻ. Then ሺܯ௡, ݃ሻ is 
concircularly Ricci-semisymmetric if and only if ܸ is conformal killing. 
 
4.   Ricci Soliton in Generalized Concircular࣐ - Recurrent Kenmotsu Manifold 
Let us consider a generalized concircular ߮-recurrent Kenmotsu manifold. Then by virtue of (2.2) 
and (2.20) we have  
 െ ൫ሺߘௐܥሻሺܺ, ܻሻܼ൯ ൅ ,ሻሺܺܥௐߘ൫ሺߟ  ܻሻܼ൯ߦ  
  ൌ ,ሺܺܥሺܹሻܣ  ܻሻܼ ൅ ,ሺܹሻ൛݃ሺܻܤ  ܼሻܺ –  ݃ሺܺ, ܼሻܻൟ.  (4.1) 
From which follows that 
  െ ݃൫ሺߘௐܥሻሺܺ, ܻሻܼ, ܷ൯ ൅ ,ሻሺܺܥௐߘ൫ሺߟ  ܻሻܼ൯ߟሺܷሻ 
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     ൌ ,ሺܺܥሺܹሻ ݃ሺܣ  ܻሻܼ, ܷሻ    ൅ ,ሺܹሻ ሼ݃ሺܻܤ  ܼሻ ݃ሺܺ, ܷሻ–  ݃ሺܺ, ܼሻ ݃ሺܻ, ܷሻሽ.     (4.2) 
Let { ݁௜}, ݅ ൌ  1, 2, ڮ , ݊ be orthonormal basis of the tangent space at any point of the manifold. 
Then by putting ܺ ൌ  ܻ ൌ   ݁௜ in (4.2) and taking summation over ݅, 1 ൑  ݅ ൑  ݊, we get 

    ሺߘௐܵሻሺܻ, ܼሻ  ൌ  
ሺܹሻݎ݀

݊
 ݃ሺܻ, ܼሻ – 

ሺܹሻݎ݀
݊ሺ݊ െ 1ሻ

 ሾ݃ሺܻ, ܼሻ –   ሺܼሻሿߟ ሺܻሻߟ 

  – ሺܹሻܣ  ቂܵሺܻ, ܼሻ  െ 
௥

௡
 ݃ሺܻ, ܼሻቃ   െ – ሺܹሻ ሺ݊ܤ   1ሻ ݃ሺܻ, ܼሻ. (4.3ሻ 

Replacing ܼ by ߦ in (4.3) and using (2.2) and (2.10), we have 

 ሺߘௐܵሻሺܻ, ሻߦ  ൌ  ቂ
ௗ௥ሺௐሻ

௡
 ൅ – ሺܹሻ ቀሺ݊ܣ   1ሻ  ൅ 

௥

௡
ቁ – – ሺܹሻ ሺ݊ܤ   1ሻቃ  ሺܻሻ.          (4.4)ߟ 

Now we have  
   ሺߘௐܵሻሺܻ, ሻߦ  ൌ ,ௐܵሺܻߘ  – ሻߦ  ܵሺߘௐܻ, – ሻߦ  ܵሺܻ,  .ሻߦௐߘ
Using (2.5), (2.6) and (2.10) in the above relation, it follows that 
  ሺߘௐܵሻሺܻ, ሻߦ  ൌ  െ ሾܵሺܻ, ܹሻ  ൅ ሺ݊ –  1ሻ ݃ሺܻ, ܹሻሿ.  (4.5) 
In view of (4.4) and (4.5), we have  

  Sሺܻ, ܹሻ  ൌ  െ ሺ݊ –  1ሻ ݃ሺܻ, ܹሻ – 
ௗ௥ሺௐሻ

௡
– ሺܻሻߟ  – ሺܹሻ ቂሺ݊ܣ   1ሻ  ൅  

௥

௡
ቃ         ሺܻሻߟ 

  ൅ ܤሺܹሻ൫݊ –  1൯݃ሺܻ, ܹሻ. (4.6) 
Replacing ܻ by ܻ߮ and ܹ by ܹ߮ in (4.6) and using (2.3), (2.11), we obtain 
  ܵሺܻ, ܹሻ ൌ  െ ൫݊ –  1൯݃ሺܻ, ܹሻ.  (4.7) 
Now, by virtue of (4.7) and (2.13), we get 

ൌ ߣ    
ሺ௡ିଵሻమ

௡
. 

Therefore, ߣ is positive. Hence we state the following: 
Theorem 4.1. A Ricci soliton in ݊-dimensional generalized concircularly ߮-recurrent Kenmotsu 
manifold is expanding.  
Similarly, we obtain the same results for locally concircularly φ-symmetric and concircular 
φ-recurrent Kenmotsu manifold. Hence we get the following corollaries: 
Corollary 4.1. A Ricci soliton in ݊-dimensional locally concircularly ߮-symmetric Kenmotsu 
manifold is expanding. 
Corollary 4.2. A Ricci soliton in ݊-dimensional concircularly ߮-recurrent Kenmotsu manifold is 
expanding. 
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1.   Introduction  
Complex continuous wavelets over real-valued continuous wavelets give more detailed 
information in transient signal detection. The complex continuous wavelet transform of a real 
signal is plotted in modulus form and phase form, rather than in real and imaginary forms. In the 
complex continuous wavelet transform analysis, the modulus maxima and the phase crossings, 
reveals the locations of sharp signal transitions. Also, by making use of the phase information, the 
local maxima and inflection points, can be recognized. 
It is well known fact that the choice of mother wavelet is application-dependent. So far there is no 
means of selecting a suitable wavelet basis, other than experience and the method of choosing an 
appropriate wavelet basis has primarily been that of trial and error. In the paper [1], the author 
discussed about the properties of wavelets which may helps mother wavelet selection in a chosen 
application.  
So in this paper we discuss certain properties of the family of new complex continuous wavelets [2] 
which we proposed in a recent time, which may help in determining the choice of mother wavelet 
for various applications. 
 
2.  Complex Continuous Wavelets: 
2.1. New complex continuous wavelet 
This family is built with different order by starting from the complex function  

  2

1
.
1

ixx e
x

 


 

and taking the 
thk derivative of  x the integer k  is the parameter of this family and 

represents the order of the wavelet of the family i.e.  k x is a Complex Continuous Wavelet for 

each k  and  

    
k
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d
x C x
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In the previous formula, kC  is such that   2
1, 1, 2,3.........,8k x k    .  

where  k x   is the thk  derivative of  x  and   
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It has been verified that for the above functions  k x  , 

   2
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
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Where  ˆ
k   is the fourier transform of  k x  and 

    1ˆ ( ) ei x k
k k x e dx i    


 



    . 

Hence the functions  k x , 1,2,3.........,8k   forms a family of One dimensional complex 

continuous wavelets. Each member is named as crsw followed by their order. 
 
2.2. Some existing complex continuous wavelet: 
 
2.2.1. Complex Gaussian Wavelets (cgau) 

This family is built starting from the complex Gaussian function 
2

( ) e eix x
pf x C    and by 

taking the thp  derivative of ( )f x . The integer p  is the parameter of this family and in the 

previous formula, pC is such that   2
1pf x   , where ( )pf x  is the thp  derivative of

( )f x . 

2.2.2. Complex Morlet Wavelets (cmor) 

A complex Morlet wavelet is defined by  
2

21
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i f x f
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x
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




   where bf  is a bandwidth 

parameter and cf  is a wavelet center frequency. The order of the wavelet is defined by c bf f . 
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3.   Properties 
3.1. Time-bandwidth product of the wavelets 

The time width and the frequency width of the wavelet function ( )k x  are defined as  
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Thus 2 2.t    defines the time-bandwidth product of the wavelet. Lesser values of 2
t   and 2

   

correspond, respectively, to higher time and frequency localizations. Among the existing complex 
continuous wavelets the optimum time-frequency localization (lesser time-band width product) 

holds only for those complex continuous wavelets containing  Gaussian function 
2

e x [1] such as 
complex gaussian and complex morlet wavelets. 
The values of time width and frequency width for each member of the new complex continuous 
wavelets along with complex morlet and complex gaussian wavelets are computed and tabulated. 
From the tabulated values it can be observe that the time width of these new complex wavelets has 
got lesser values as compared to that of complex gaussian wavelets and complex morlet wavelet 
and hence are more appropriate to use in those application which requires good localisation in time 
such as examination of QRS complex in ECG signals. The Power Spectral Density (PSD) which 
shows the strength of the variations(energy) as a function of frequency are also computed for each 
member of the family and are given in the following figure. 
 

Complex Gaussian wavelets   
New Complex 
wavelets   

Complex Morlet 
wavelets 

             

Order 
2
t  2

  2 2.t    Order
2
t  2

  2 2.t   Order
2
t  2

  2 2.t    

1 0.50000 5 2.5  1 1 3.6667 3.6667 1-1.5 0.3750 40.1451 15.054 
2 0.45000 7.6000 3.42  2 0.45455 7.6818 3.4917 1-1 0.2500 40.483 10.121 
3 0.44737 10.053 4.4972  3 0.21893 14.024 3.0703 1-0.5 0.1250 41.4784 5.1848 
4 0.44895 12.429 5.5802  4 0.14430 22.502 3.2471 1-0.1 0.0250 49.4784 1.2370 
5 0.45114 14.759 6.6584  5 0.11118 33.000 3.6689 6-2 0.5000 36.5000 18.250 
6 0.45326 17.056 7.7310  6 0.090911 45.500 4.1365     

7 0.45520 19.329 8.7988  7 0.076923 60.000 4.6154     
8 0.45694 21.584 9.8624  8 0.066667 76.500 5.1     

             
             
Table 1: Time-width, Frequency-width and timeband-width product of the wavelets 
 
3.2 Conversion of scale to frequency: 
The continuous wavelet transform (CWT) converts the signal from time domain (one dimension) to 
scale-time domain (two dimension) which is not very easy to understand compared with the Fast 
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Fourier Transform (FFT) result [3]. The scale value can be converted into frequency 
(pseudo-frequency), the value of which depends on the central frequency of the applied wavelets 
and the scale value a  and is given by 

.
c

a

f
f

a



 

where 
 a  is a scale. 

   is the sampling period. 

 cf  is the center frequency of a wavelet in Hz. 

 af  is the pseudo-frequency corresponding to the scale a , in Hz. 

The idea is to associate with a given wavelet a purely periodic signal of frequency cf  and 1
cf 
   

where   is the Fourier wavelength (frequency Fourier factor) and the relationship between the 
equivalent Fourier period and the wavelet scale can be derived analytically for a particular wavelet 
function by substituting a cosine wave of a known frequency into wavelet transform definition [4] 
and computing the scale a  at which the wavelet power spectrum reaches its maximum and it is 

found to be 
4

2 1k k

 


  where 1,2,3....,8.k   

The following table shows the values of cf for various members of the wavelets. 

k
cf

1 3 
4π 

2 5 
4π 

3 7 
4π 

4 9 
4π 

5 11 
4π 

6 13 
4π 

7 15 
4π 

8 17 
4π 

Table 2: Central frequency cf  

The following figures shows the center frequency based approximation of complex wavelets. 
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Figure 1: Central frequency based approximation of wavelets members 
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Figure 2: PSD of wavelets members 1-4 
 

 
 

Figure 3: PSD of wavelets members 5-8 
Conclusion. 
The time width, frequency width and time-band width product for the new complex continuous 
wavelets are computed and observed that the time width and time-band width product have lesser 
values for some of the members of the new complex wavelets and are appropriate to use in those 
application which requires good localization in time. The plots of Power Spectral Density (PSD) for 
each members of the family are also computed. The scale to frequency relation using these new 
complex wavelets are also shown. 
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Abstract: With the advent of high-throughput techniques, such as Next Generation Sequencing (NGS), it is possible to 
sequence the entire genome with massive parallel speed in less cost and time. The NGS as deep sequencing method has 
killed microarray techniques and opened several new avenues in biomedical research including deeper study of disease 
mechanism. However, computational analysis of NGS data is still challenging which requires complex computational 
methods and huge computation power. In this paper, we have reviewed brief background of NGS technologies, and an 
attempt has been made to present how it works as a new platform for disease studies.  

 
1. Introduction 
History of sequencing techniques goes long back when Frederick Sanger announced the sequence 
of first protein (bovine insulin) in 1955. However, earlier methods of DNA sequencing were 
announced in 1977 by Frederick Sanger and his team (Sanger et al., 1977) which involved chain 
termination. This came to be known as ‘Sanger Sequencing’.  In the same year Allan Maxam and 
Walter Gilbert (Maxam and Gilbert, 1977) deployed fragmentation method for DNA sequencing. 
These two methods have been proven to be benchmark in the field of sequencing to study genes and 
genomes. Somehow due to use of more radioisotopes in later technique, gradually discouraged it 
and as a result Sanger sequencing became the prevailing DNA sequencing method for the next 30 
years (Van Vliet, 2010).The Sanger sequencing method is popularly known as first generation of 
sequencing technique and is the most popular 
choice for sequencing genomes since last four 
decades (Voelkerding et al., 2009). In early 
90’s (1990) the production of DNA 
sequences was commonly done with 
semi-automated implementations of the 
Sanger biochemistry which is also a capillary 
based method (Sanger et al., 1977) 
The various strategies for sequencing of DNA 
can be clustered into four categories 
(Shendure and Ji, 2008), as shown in Fig. 1. 
The NGS is the result of implementations of 
cyclic-array sequencing, which has been 
found to have extensive commercial 
applications. 

 
Fig.1 Strategies for DNA sequencing 



  Next Generation Sequencing: A New Platform for Disease Study 51 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 50-61 

1.1.  The conventional sequencing technology: Sanger sequencing 
The key steps involved in genomic sequencing by Sanger sequencing method are (Shendure et al., 
2005), 
 Isolation of target DNA from samples. 
 Amplification of interested region in DNA. 
 “Cycle sequencing” reactions to generate sequencing product. 
 Purifying reactions by removing fluorescent ddNTP, previously used in the sequencing 

procedure. 
 Capillary electrophoresis of resultant products from sequencing after injecting into 

capillaries filled with polymer to determine sequence by high resolution electrophoretic 
separation. 

Translation of raw data generated into electropherograms usesvarious software tools. 
 

1.2.  Advent of NGS Technology 
According to International Human Genome Sequencing Consortium 2004 (IHGSC, 2004),the 
Sanger method has been the gold standard for DNA sequencing for the past 30 years.Sanger 
sequencing technique was later used in sequencing human genome in 2004.The contributors of 
Human Genome Project for first human genome sequencing had large sequencing facilities holding 
capillary sequencers and were supported by complex robotics and infrastructure. Despite this, it 
still was not well-suited to studying variations as it was merely the scaled-up version of simple 
Sanger sequencing (Sanger et al., 1977) which came into existence just 25 years beforehand 
(Kilpinen and Barrett, 2013). 
 
The Human Genome Project (Lander et al., 2001) was time-consuming and required more set of 
advanced resources. This resulted in immediate need of faster, cheaper higher throughput 
technologies. Therefore, in same year (2004) the National Human Genome Research Institute 
(NHGRI) set funds for research aiming to reduce the time and cost of human genome sequencing to 
US$1000 in ten years (Schloss, 2008). The very first pyrosequencing platform that could perform 
massively parallel sequencing was launched in 2005 which initiated the dawn of new high 
throughput era of sequencing called next-generation sequencing (NGS) (Margulies et al., 2005; 
Shendure et al., 2005). 
 
The next generation sequencing (NGS) is revolutionary technology which has a great positive 
impact on field of genomics which generates fast, economical, high resolution and accurate 
genome-scale sequence data with exquisite resolution and accuracy. It has accelerated the 
sequencing rate to several hundredsgbs of nucleotide sequence per instrument run, while reducing 
sequencing cost by over five orders of magnitude (Xuan et al., 2013).Since the starting in 2008, 
NGS platforms have reduced the cost of sequencing DNA by more than 50 000 folds of initial 
costing, thus making sequencing economical. (http://www.genome.gov/sequencingcosts/) 
 
1.3. NGS advantage over Sanger sequencing technology 

The First Generation Sequencing had some shortcomings which were later improvised end 
lead to development and commercialization of NGS technologies (Van Vliet, 2010).These 
improvements over Sanger sequencing method (First Generation sequencing methods) are: 

 NGS library preparation unlike bacterial cloning of DNA fragments as in first generation. 
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 Millions of sequencing reactions can be produced parallel rather than few hundred as in Sanger 
technique. 

 The result from NGS sequencing can be directly detected without the need for separate 
electrophoresis; base interrogation as is performed cyclically and in parallel (Van Vliet, 2010). 

 Thus global advantages of second-generation (cyclic-array strategies) or NGS techniques over 
Sanger sequencing are (Shendure and Ji, 2008)- 

 The in vitro construction of a sequencing library followed by in vitro clonal amplification for 
sequencing in NGS technology eradicates the disadvantage Sanger sequencing 
(ie.transformation of E. coli and colony picking).  

 Array-based sequencing (NGS) has high degree of parallelism than conventional 
capillary-based sequencing (Sanger sequencing). 

  Array features of NGS are immobilized to a planar surface which is advantageous because it 
can be enzymatically manipulated by a single reagent volume. This in turn lowers the costs for 
generation of DNA sequence. 

 The resolution of NGS can be tuned according to the experimental needs. 
 The natural competition among bases while synthesis minimizes incorporation bias leading to 

elimination of errors and missed calls related to homopolymers. 
 

1.4.  Limitations of microarray which paved path for NGS development: 
 Hybridization techniques such as Microarray technology have short range for detecting 

transcript levels due to background noises, saturation and spot density (Van Vliet, 2010). 
 Comparison of transcription levels in between microarray experiments is challenging and 

requires complex normalization methods (Hinton et al., 2004). 
 Microarray technology merely measures the relative level of RNA expression so we can’t 

distinguish between de novo synthesized transcripts and modified transcripts. Moreover, it 
cannot determine the promoter used for de novo transcription accurately (Van Vliet, 2010). 
 

Majority of these issues can be overcome using high-throughput sequencing of cDNA libraries 
(AC't Hoenet al., 2008) and coupling microarrays and cDNA sequencing can efficiently generate 
data on full microbial transcriptomes synergistically (Van Vliet, 2010).The studies of gene 
expression have been switched from microarrays to NGS-based methods, enabling identification 
and quantification of transcripts regardless of any prior knowledge of genes. Also, provides 
information relating to sequence variation,alternative splicing and so on (Wang et al., 2009). 
 
1.5.  NGS Platforms 
The 454 sequencing technology is used in the 454 Genome Sequencers and Roche Applied 
Science; Solexa technology is used in the Illumina Genome Analyzer; SOLiD platform is 
extensively used by Applied Biosystem  and the HeliScope Single Molecule Sequencer 
technology is used in Helicos (Shendure and Ji, 2008). 
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1.6. Working Principle of NGS 
(Illumina) 
Illumina NGS platform relies on sequencing by 
synthesis (SBS) technology which tracks down 
the attachment of fluorescent labeled 
nucleotides while copying DNA chain in 
parallel. The Fig. 2(Grada andWeinbrecht, 
2013) represents the steps involved in NGS data 
generation. The raw input sample is cleaved into 
shorter fragments (read length of 100-150bp), 
sequencing machinery used. The longer 
fragments are firstly ligated to specific adaptors 
which enable them to anneal the slide later. 
Then the PCR is carried out to amplify each read 
separately, creating a spot with several copies of 
same read. Then separation of each strand to be 
sequenced is done. The slide is flooded with 
DNA polymerase, fluorescently labeled 
nucleotides with the colour corresponding to the 
specific base and a terminator ensuring addition 
of one base at a time. The output data from 
Illumina sequencing systems can range from 
300 kilo-base up to 1 tb from a single 
sequencing run, depending on instrument type 
and its configuration. 
(http://www.illumina.com/technology/next-gen
eration-sequencing.html ) 
 

 
Fig.2 Steps involved in NGS data generation. BOX 1) Template preparation in which 

genomic or cDNA is used to generate library by fragmenting, ligating to specific adapters 
and at last amplifying it. Box 2) Next step is sequencing the fragments and imaging.  

Box 3)Data analysis and interpretation 
 

1.7. NGS as Sub-field for Bioinformatics 
There are different types of NGS approaches currently in practice, some of which can be 
enumerated as (Raza and Ahmad, 2016; Voelkerding et al., 2009; 
http://www.illumina.com/technology/next-generation-sequencing.html): 
 Targeted sequencing.  
 RNA sequencing 
 Metagenomic sequencing 
 Transcriptome sequencing  
 Paired-end sequencing 
 Whole-exome sequencing 
 bisulfite-treated DNA sequencing 
 ChIP-Seq 
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 Nuclease fragmentation and sequencing 
 Molecular barcoding 

The NGS technology is new in trend and development in this field is being done gradually. Several 
software tools are under development and NGS data analysis tools are available as open source. 
Functions of these tools are concerned majorly in subfields as shown in Fig. 3 (Zhang et al., 2011). 

 
 

Fig. 3 Various NGS subfields concerned for development of bioinformatics tools 
 

2. Promises in Disease Studies 
The NGS has proven to be easy and inexpensive high throughput technique for profiling gene 
expression and genome annotation. It is found to be useful in area of genomic, transcriptomic, 
regulomic, metagenomic, epigenomic and diagnostic research (Mutz et al., 2013). It also supports 
the research in field of agrigenomics, and forensic science (Van Vliet, 2010). It is also 
advantageous in clinical diagnostics and other aspects of diseases, medicines and drugs like disease 
risk assessment, therapeutic identification, and prenatal testing (Koboldt et al., 2013). 
NGS has already been used in field of diagnostics and forensic studies which resulted in generation 
of high-throughput data. They successfully answered some questions which were overlooked by 
Sanger sequencing (Weber-Lehmann et al., 2014). 
Several science projects have been benefited from the low cost and high throughput of NGS. Two 
of the most popular examples regarding this are stated as following. 
 HapMap Project: The international collaborative project called HapMap Project 

(International HapMap Consortium, 2005). Wasintroduced Genome Wide Association Studies 
(GWAS)era by studying common SNPs inthe human genome in detail. This 
informationenabled researchers to design arrays of several SNPs that were able to successfully 
capture nearly all the commonvariationin European populations (Barrett et al., 2006). 

Subfields 
for 

Bioinform
atics Tools  

Read 
alignment

Reference 
based 

assembly

de-novo 
assembly

Base-calling 

Genome 
annotation

Functional 
prediction

Data 
analysis 

Diagnostics



  Next Generation Sequencing: A New Platform for Disease Study 55 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 50-61 

 1000 Genomes Project: The data from 1000Genomes pilot project (1000 Genomes Project 
Consortium, 2010) from 179 samples have been exclusively utilized in the study of complex 
diseases. This is done either by improving imputationreference sets or by designing of 
next-generation genotypingarrays. The 1000 genome project reduced the cost of sequencing 
an individual genome upto ~$1,000 per person (von Bubnoff, 2008) which showed the way 
towards personalized medicine (Mardis, 2006; Lunshof et al., 2010). 

 Study of Mendelian diseases: NGS has been utilized in studying mendelian disease in an 
affected family by searching for the causes of mutation. For this linkage analysis was done, 
followed by fine-mapping and then Sanger sequencing of positional candidate genes. Exome 
sequencing is successful to such diseases most of the causal alleles disrupt protein-coding 
(exonic) sequences (Stenson et al., 2009). 

 ENCODE project: NGS enabled us to get genome-wide annotation of functional sites in 
mouse and human which gave us information regarding regulatory sequences of their 
genomes. (ENCODE Project Consortium, 2004).  

 Human Microbiome Project: NGS characterized diversity and types of bacteria and viruses 
dwelling within human body of several healthy individuals. Thus it defined the baseline for 
microbial health of human and any changes in their population signifies the marker of disease, 
etc (Peterson et al., 2009). 

The RNA-Seq data obtained from NGS platforms could help researchers interpreting the 
“personalized transcriptome” that would help in understanding the changes occurring in human 
transcriptome. This detection could enable identifying key genes for a disease. But this approach is 
sensitive to time and money (Mardis, 2006; Lunshof et al., 2010). 
The completion of human genome sequencing and thus availability of dataset, the use of NGS in 
studying diseases and variations discoveries has become easy and almost intellectually effortless 
(Kilpinen and Barrett, 2013). 
The NGS provides coverage of large genomic regions of interest which can be successfully laid to 
develop a precise and strong therapeutic workflow for both germline and somatic cancers (Grada 
andWeinbrecht, 2013). 
Areas to be looked for disease research can be categorized into following (Xuan et al., 2013), as 
shown in Fig. 4. 
 Regulatory Networks 
 Biomarker discovery 
 Diagnostics 
 Personalized medicine 
 Phylogenetic traits 
 Cancer Genomics 
 Microbial Genomics 
 Agriculture and Animal research 
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Fig.4 Applications of NGS in disease study. 
 

Some of the applications of NGS in disease study are (Mutz et al., 2013; Mardis, 2008; Grada and 
Weinbrecht, 2013): 
 Detecting the genetic mutations and role of gene involved in diseases such as cancer and other 

pathological conditions. 
 Discovery of noncoding RNA (ncRNA) and miRNAs responsible for the development of drug 

resistance. 
 Detecting and quantifying the low frequency variants like rare drug-resistant viral mutations as 

in case of HIV, hepatitis B virus, or microbial pathogens that are involved in phenotypic traits 
and diseases. 

 Identifying key genes responsible for skin diseases.  
 RNA identification of drug-related genes and genes for fusion proteins in Cancer. 
 Quantifying RNA expression levels. 
 It can be used in examining epigenetic modifications on a genomic scale which plays important 

role in cellular processes (gene regulation, disease mechanisms, and oncogenetic development, 
etc.).  

 Identifying undiscovered, novel virulence factors through sequencing the bacterial and viral 
genomes. 

Some of the other area of applications of NGS (Mutz et al., 2013; Zainab et al., 2015) are: 
 de novo sequencing (specially eukaryotic genomes) 
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 Identification of Single Nucleotide Polymorphisms (SNPs), small insertions/deletions (indels), 
copy number variations (CNVs) and other structural variations.   

 Analyzes gene regulation events (DNA–protein interactions, transcription factor bindings, 
nucleosome positioning, etc.) 

 Gene expression profiling (e.g. differentially expressed genes identification) 
 Discovery of novel small RNAs, sPiwi-interacting RNAs (piRNAs) by ncRNA and small 

RNA profiling studies. 
 Study microbial diversity in humans or in the environment. 
 Analysis of genome-wide methylation. 
 Protein-nucleic acid interaction analysis by ChIP-Seq. 
 Moreover, in last few years NGS-based methods were widely used for genome analysis to 

discover new mutations and fusion transcripts in cancer. 
 The perception regarding several genes by medical profession and researches are continually 

changed along with evolving gene sequencing on account of variations in human genome. 
Likewise, the development in NGS also increases the versatility of genomics field (Mardis, 
2008). 
 

3. Challenges 
It is quiet cheaper than first generation sequencing approaches in terms of time and money but still 
it is too expensive for many labs having startup cost of ~$100,000 and individual sequencing 
reactions of ~$1,000 per genome (Zhang et al., 2011; Xuan et al., 2013). 
 Large dataset from NGS can implicate storage problem (Van Vliet, 2010). 
 Data analysis of vast high throughput data can be time-consuming. 
 Data analysis (analysis, interpretation and visualization) for result from NGS may require 

special and accurate bioinformatics analytical skill (Zhang et al., 2011). 
 Moreover, the Microarrays measure a response in terms of a position on a spectrum, 

whereas cDNA sequencing in terms of scores (number of hits) for each transcript thus is 
census-based method (Van Vliet, 2010). This census-based method used in sequencing 
raises complex statistical issues in data analysis (Jiang and Wong, 2009; Oshlack and 
Wakefield, 2009). 

 Difference in data formats, read lengths, etc. among different NGS platforms results in need 
of development of bioinformatics tools for management and interpretation of NGS data. 

 Guidelines for minimal requirements for online publication of NGS datasets (genomics and 
proteomics) is needed to be setup, similar to MIAME guidelines (Brazma et al., 2001) for 
microarray datasets (Van Vliet, 2010). 

 Read-lengths are much shorter for all currently available NGS platforms (Van Vliet, 2010). 
 The base-calls generated by new platforms are ten-times less accurate than those by Sanger 

sequencing. 
 cDNA sequence should be accurately predetermined and poor quality sequence should be 

removed, enabling correct mapping onto Genome (Van Vliet, 2010). 
 Sequence errors due to inaccurately sequencing of homopolymeric regions (repeating 

nucleotides) occur on certain NGS platforms (Ion Torrent PGM) and short read length data 
are generated (Grada andWeinbrecht, 2013). 



58  ALMAS JABEEN, NIKHAT IMAM, NADEEM AHMAD AND KHALID RAZA 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 50-61 

 The cDNA library construction requires amplification of cDNA, therefore, risk of 
over-representation of shorter transcripts can lead to unstable result. 

These limitations create important algorithmic challenges for the future research perspective and 
paves path of these technologies to upgrade its specifications and versatility. It is really appreciable 
that the technical performance of sequencing technologies has progressed to this current level 
gradually over last three decades. 
The NGS technology is new in trend and development in this field is being done gradually. Several 
software tools are under development and many are available online for NGS data analysis. 
Functions of these tools are concerned majorly in subfields like (Fig. 5) (Zhang et al., 2011): 
 read alignment to a reference sequence; 
 de novo assembly; 
 reference-based assembly; 
 base-calling or genetic variation detection (such as SNV, Indel); 
 genome annotation, & functional prediction (Functional variant prediction, Variant 

detection(Structural/genomic variant& Single nucleotide variant), Differences between 
genomes) 

 data analysis utilities  
 diagnostics/utilities 

 
Fig. 5 Various NGS subfields concerned for development of bioinformatical tools. 

 
Advent of Third Generation Sequencing “Nanopore Sequencing”: Since NGS enabled 
completion of whole genome sequencing and revealed the depth of genomes but on the other side it 
also laid wide range of new questions and some questions were made more difficult to answer.  
 We are able to identify correlated variants associated to disease successfully through NGS but 

how can we further identify its causal alleles and their effect in depth?  
 How can we find association between rare alleles with moderate effect, when their confirm 

association needs impossibly large sample sizes with statistical significance? 
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 Integration of genomic function, including sequence, epigenetic state, chromatin structure, and 
conformation in the nucleus to understand phenotypic effects is still challenging? 

These unexplored issues might be looked by ‘third-generation’ technologies, such as 
‘Nanopore-based technologies’ (Manrao et al., 2012), which can sequence least amount of DNA 
(even single molecules). In this method a small DNA molecule passes by a small pore and resulting 
into electric current or optical signal as a read sequence (Clarke et al., 2009). Nanopore technology 
is considered as third-generation technology because it enables the sequencing of few molecules 
even a single molecules in real time (Van Vliet, 2010). 
 
4. Conclusion 
NGS is a sequencing technology that performs high throughput parallel sequencing 
simultaneously. In this high-throughput technology several DNA fragments gets sequenced 
simultaneously. Thus entire genome gets sequenced in less than a day. The NGS has been a boon 
for researchers who keep keen interest in studying biological systems and disease.The advent of 
NGS has fueled a revolution in biological research. Its promises are accessibility for whole genome 
sequencing in less duration of time ,limitless dynamic range of expression profiling, allows to tune 
the level of data resolution to meet specific experimental needs,  thus is highly scalable, gives large 
extent of information as possible about the ‘transcriptome’ representing complete collection of 
transcribed sequences in a cell, separates different classes of RNA species into de novo synthesized 
RNA (primary transcripts) and post-transcriptionally modified (secondary) transcripts, used in 
sequencing of the human genome and, the Hap-Map project that have helped in studying human 
disease and resequences many ‘normal’ human genomes to efficiently capture the spectrum of 
variability to establish an important baseline for complex disease studies. 
In effect, the sequencing of a human genome can now be completed within 2 weeks and the cost of 
data generation will be ~$5,000 (Ku et al., 2013).The conventional sequencing (Sanger sequencing) 
is still the most choice for small-scale projects in future because of its‘sequencing granularity’ but 
still large projects will depend on NGS.NGS successfully leads to accesswhole genome sequencing 
in less duration of time and has limitless dynamic range of expression profiling. Moreover, it is 
highly scalable.NGS has proven to be easy and inexpensive technique for gene expression profiling 
and genome annotation. High throughput sequencing is found to be useful in the area of genomic, 
transcriptomic, metagenomic, epigenomic and diagnostic research. But it still face some 
challenges, like problems for data storage, data analysis requires highly skilled professionals, 
requires platform specific bioinformaticstools,etc. Moreover, sequencing errors occur for 
homopolymeric regions. These limitations of NGS create important algorithmic challenges for the 
future research provides foundation for improvements and removing the causatives which hinders 
its technical parameters.Taken together, the continuing trends in data-generation facility and cost 
reduction in NGS platforms will probably contribute, over the long term, to increasing our 
genome-wide knowledge of organisms,organism systems, and overall provide deeper insight of 
disease mechanism. 
 
REFERENCES 
1. AC'tHoen, P., Ariyurek, Y., Thygesen, H. H., Vreugdenhil, E., Vossen, R. H., de Menezes, R. X., ... & den Dunnen, 

J. T. (2008). Deep sequencing-based expression analysis shows major advances in robustness, resolution and 
inter-lab portability over five microarray platforms. Nucleic acids research,36(21), e141-e141. 

2. Barrett, J. C., &Cardon, L. R. (2006).Evaluating coverage of genome-wide association studies. Nature 
genetics, 38(6), 659-662. 



60  ALMAS JABEEN, NIKHAT IMAM, NADEEM AHMAD AND KHALID RAZA 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 50-61 

3. Brazma A, Hingamp P, Quackenbush J et al. (2001) Minimum information about a microarray experiment 
(MIAME)-toward standards for microarray data. Nat Genet 29: 365–371. 

4. Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009).Continuous base identification for 
single-molecule nanopore DNA sequencing. Nature nanotechnology, 4(4), 265-270. 

5. ENCODE  Project  Consortium.  (2004).  The  ENCODE  (ENCyclopedia  of DNA  elements)  project. Science, 306(5696), 
636‐640. 

6. Grada, A., &Weinbrecht, K. (2013). Next-generation sequencing: methodology and application. Journal of 
Investigative Dermatology, 133(8), 1-4. 

7. Hinton, J. C., Hautefort, I., Eriksson, S., Thompson, A., &Rhen, M. (2004). Benefits and pitfalls of using 
microarrays to monitor bacterial gene expression during infection. Current opinion in microbiology, 7(3), 277-282. 

8. IHGSC (International Human Genome Sequencing Consortium). (2004). Finishing the euchromatic sequence of the 
human genome. Nature, 431(7011), 931-945.) 

9. International HapMap Consortium.(2005). A haplotype map of the human genome. Nature, 437(7063), 1299‐1320. 

10. Jiang, H., & Wong, W. H. (2009).Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8), 
1026-1032. 

11. Kilpinen, H., & Barrett, J. C. (2013). How next-generation sequencing is transforming complex disease 
genetics. Trends in Genetics, 29(1), 23-30. 

12. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K., &Mardis, E. R. (2013). The next-generation 
sequencing revolution and its impact on genomics. Cell, 155(1), 27-38. 

13. Ku, C. S., Pawitan, Y., Wu, M., Roukos, D. H., & Cooper, D. N. (2013). The Evolution of High-Throughput 
Sequencing Technologies: From Sanger to Single-Molecule Sequencing. In Next Generation Sequencing in Cancer 
Research (pp. 1-30).Springer New York. 

14. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., ...&Funke, R. (2001). Initial 
sequencing and analysis of the human genome. Nature, 409(6822), 860-921. 

15. Lunshof, J. E., Bobe, J., Aach, J., Angrist, M., Thakuria, J. V., Vorhaus, D. B., ...& Church, G. M. (2010). Personal 
genomes in progress: from the human genome project to the personal genome project. Dialogues 
ClinNeurosci, 12(1), 47-60. 

16. Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., ...&Gundlach, J. H. 
(2012). Reading DNA at single-nucleotide resolution with a mutant MspAnanopore and phi29 DNA 
polymerase. Nature biotechnology, 30(4), 349-353. 

17. Mardis, E. R. (2006). Anticipating the $1,000 genome. Genome biology, 7(7), 112. 

18. Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in genetics, 24(3), 
133-141. 

19. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., ...&Dewell, S. B. (2005). 
Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376-380. 

20. Maxam, A. M., & Gilbert, W. (1977).A new method for sequencing DNA.Proceedings of the National Academy of 
Sciences, 74(2), 560-564. 

21. Mutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013).Transcriptome analysis using 
next-generation sequencing. Current opinion in biotechnology, 24(1), 22-30. 

22. Oshlack, A., & Wakefield, M. J. (2009). Transcript length bias in RNA-seq data confounds systems biology. Biology 
direct, 4(1), 1. 

23. Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J. A., ...& Baker, C. C. (2009). The NIH 
human microbiome project. Genome research, 19(12), 2317-2323. 

24. Raza K. & Ahmad S. (2016). Principle, analysis, application and challenges of next-generation sequencing: a review. 
arXiv preprint arXiv:1606.05254. 

25. Sanger, F., Nicklen, S., & Coulson, A. R. (1977).DNA sequencing with chain-terminating inhibitors. Proceedings of 
the National Academy of Sciences, 74(12), 5463-5467. 

26. Schloss, J. A. (2008). How to get genomes at one ten-thousandth the cost.Nature biotechnology, 26(10), 1113. 



  Next Generation Sequencing: A New Platform for Disease Study 61 

 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES Vol. 7, 2016, pp. 50-61 

27. Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature biotechnology, 26(10), 1135-1145. 

28. Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., ... & Church, G. M. 
(2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309(5741), 1728-1732. 

29. Stenson, P. D., Ball, E. V., Howells, K., Phillips, A. D., Mort, M., & Cooper, D. N. (2009). The Human Gene 
Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalised 
genomics. Human genomics, 4(2), 1. 

30. vanDijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing 
technology. Trends in genetics, 30(9), 418-426. 

31. Van Vliet, A. H. (2010). Next generation sequencing of microbial transcriptomes: challenges and 
opportunities. FEMS microbiology letters,302(1), 1-7.  

32. Voelkerding, K. V., Dames, S. A., &Durtschi, J. D. (2009). Next-generation sequencing: from basic research to 
diagnostics. Clinical chemistry, 55(4), 641-658.\ 

33. vonBubnoff, A. (2008). Next-generation sequencing: the race is on. Cell,132(5), 721-723. 

34. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews 
genetics, 10(1), 57-63. 

35. Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014).Finding the needle in the 
haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation 
sequencing. Forensic Science International: Genetics, 9, 42-46. 

36. Xuan, J., Yu, Y., Qing, T., Guo, L., & Shi, L. (2013). Next-generation sequencing in the clinic: promises and 
challenges. Cancer letters, 340(2), 284-295. 

37. Zainab Khatoon, Bryan Figler, Hui Zhang and Feng Cheng (2015)”Introduction to RNA-Seq and its Applications to 
Drug Discovery and Development”, Drug Dev Res 75 : 324–330. 

38. Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011).The impact of next-generation sequencing on 
genomics. Journal of genetics and genomics, 38(3), 95-109. 

39. http://www.genome.gov/sequencingcosts/ Accessed on October 1, 2016. 

40. http://www.illumina.com/technology/next-generation-sequencing.htmlAccessed on October 1, 2016 

41. http://hmpdacc.org/Accessed on October 1, 2016 

42. https://www.encodeproject.org/Accessed on October 1, 2016 



 JMI INTERNATIONAL JOURNAL OF  VOL 7 | 2016 | 62-69 
 MATHEMATICAL SCIENCES 

 

 
 
 
 
On Intuitionistic Fuzzy Projective And Injective Modules 
 
P.K. Sharma 
 

Post Graduate Department of Mathematics, D.A.V. College, Jalandhar City, Punjab, India 
Email: pksharma@davjalandhar.com 
 
Abstract:In this paper, we will introduce the notion of intuitionistic fuzzy free, projective and injective submodule of a 
module and discuss some of their properties. 
Keywords: Intuitionistic fuzzy submodule (IFSM), intuitionistic fuzzy projective (IF projective), intuitionistic fuzzy 
injective (IF injective), intuitionistic fuzzy free (IF free) submodule, homomorphism. 
Mathematics Subject Classification: 03F55, 08A72, 13C10, 13C11, 16D40, 16D50. 

 
1.  Introduction  
The concept of intuitionistic fuzzy sets was introduced by K.T. Atanassov [1, 2] as a generalization 
of the notion of fuzzy sets in [13] and it is a very effective tool to study the case of vagueness. 
Further many researches applied this notion in various branches of mathematics especially in 
algebra and defined intuitionistic fuzzy subgroups, intuitionistic fuzzy subrings, and intuitionistic 
fuzzy sublattices, intuitionistic fuzzy submodules and so forth, for example see ([3], [5-6], [9-12] ). 
Lambek [7] described the notion of free module, projective and injective module and presented 
some interesting results. The idea of fuzzy free module and their basis was given by Muganda [8]. 
Zedehi and Amari [14] introduced the notion of fuzzy projectivity and fuzzy injectivity and 
discussed many results.  
In this paper we will define the notion of intuitionistic fuzzy free, projective and injective 
submodule of a module and discuss some of their properties.  
 
2.  Preliminaries  
In this section we recall some definitions and results which will be used later  
Definition 2.1.[1] Let X be a fixed non-empty set. An intuitionistic fuzzy set (IFS) A of X is an 
object of the following form A = { <x , A(x) , A(x) > : xX}, where A : X I  and  A : X I 
define the degree of membership and degree of non-membership of the element xX respectively 
and for any x X, we have  0 A(x) + A(x)  1, where I = [0,1].  
Remark 2.2. [2,10](i): When A(x) + A(x) = 1, i.e., when  A(x) = 1 - A(x) = c

A(x). Then A is 
called a fuzzy set. 
(ii) We write A = (A ,A) to denote the IFS A = { <x, A(x), A(x) > : xX}. 
(iii) An IFS A = (A ,A) can also be represented by a mapping  (A , A) : X  I x I.  
Definition 2.3. [6 , 8] Let M be a modules over a ring R. An IFS A = (A ,A) of M is called 
intuitionistic fuzzy (left) submodule (IFSM) if  
(i) A(0) = 1  ,  A(0) = 0; 
(ii) A(x + y)  min{ A(x) , A(y)} and  A(x + y)  max {A(x) , A(y)}, x, y M; 
(iii) A(rx) A(x)  and   A(rx) A(x), x M, rR. 
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If we replace the condition (iii) with A(xr) A(x) and A(xr) A(x), x M, r R, it is called 
intuitionistic fuzzy (right) module. When R is a commutative ring, then these two modules 
coincides. From this onward, R will be a commutative ring with unity.  
Definition 2.4. [10] Let A = ( A , A )be an IFS of a set X and if Y  X, then the restriction of the 
IFS A to the set Y is denoted by | || ( , )

Y YY A AA    and is defined as 

| | ( ) ( )  and ( ) ( )  .
Y YA A A Ax x x x x Y        

Definition 2.5. Let A = (A ,A)  and  B = (B , B) be two IFSMs of the module M and N over R 
respectively. A function  f: M  N is said to be a function from A to B  

 
if  B o f= A and B o f  = A. 
Further if f is a module homomorphism, then f is said to be a homomorphism from A to B. In this 
case, we say that A is homomorphic to B. Similarly, if  fis a module epimorphi-sm, 
monomorphism or isomorphism satisfying the above conditions, then we say that f  is an 
epimorphism, monomorphism or isomorphism respectively from A to B. 
 
Definition 2.6. [7] The direct product 

i
i J

M M


 of a family of modules { Mi |  i J } over a ring 

R, is the Cartesian product with operations defined component wise. Thus if  mM, then  

:  with  ( )i i
i J

m J M m i M


   for all iJ. The external direct sum 
i

i J

M M


 of a family of  

modules { Mi |  i J } over a ring R consist of ( )
i J

m m i


  , where ( )m i  = 0 for all but finite 

many iJ.  
 
Definition 2.7. [ 7 ] If  

i
i J

M M


 , then the canonical epimorphism  pi : M Mi, and the 

canonical monomorphism  ki : Mi M are defined as  pi(m) = m(i)  and  

;   
( ( ))   

0 ;   i

m if j i
k m j

if j i


  

. 

Clearly,  pi o ki = I (identity map) 
Proposition 2.8. [7 ] If  M is a direct sum of a family of modules { Mi |  i J } with canonical 
monomorphism ki : Mi M, then for every module N and for every family of homomorphism  
{i : Mi N  |  i J} there exists a unique homomorphism  : M  N such that  o ki = i, for all 
i J.  
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Proposition 2.9. [7 ] If  M is a direct product of a family of modules { Mi |  i J }. If for each i 
J,  pi : M Mi, be the canonical epimorphism, then for every module N and for every family of 
homomorphism {i : NMi  |  i J} there exists a unique homomorphism    : M  N such that  
pi o = i, for all i J.  

 
Definition 2.10. Let M be a module over R which is a direct product of a family of modules {Mi |  
i J}over R.Let  Ai = (Ai , Ai)be IFSMs of Mi. We define an IFS  A = (A , A)  of M by 

( ) { ( ( )) |  } and ( ) { ( ( )) |  },  ( ) .
i iA A A A

i J

m Inf m i i J m Sup m i i J m m i M   


      
 

Then A is an IFSM of M. We say this IFSM A as the direct product of the IFSMs Ai and in this case 
we write .i

i J

A A


  

Next, let M be the direct sum of the family {Mi|  i J}. If we define  
( ) min{ ( ( )) |  } and ( ) max{ ( ( )) |  },  ( ) .

i iA A A A
i J

m m i i J m m i i J m m i M   


        

[Note that m (i) = 0 for all but infinite many i]. Then A is an IFSM of M. We say this IFSM A as the 

direct sum of the IFSMs Ai and in this case we write  .i
i J

A A


   

Definition 2.11. Let 
i

i J

A A


 or ,i
i J

A A


 where A = (A ,A) and Ai = (Ai , Ai) are IFSMs on 

M and Mi respectively. Then we say the canonical epimorphism pi from M to Mi as the canonical 
epimorphism from A to Ai if     and   .

i iA i A A i Ao p o p      Similarly, we say the 

canonical monomorphism ki from Mi to M as the canonical monomorphism from Ai to A if 

   and   .
i iA i A A i Ao k o k    

 
 
3.    Intuitionistic fuzzy projective submodules 
Definition 3.1. Let S be a subset of a module M over a ring R and let A = (A ,A) be an IFSM of M. 
Let B be an IFS of S such that B  A|S. Then B is said to be linearly independent (L.I.) in A if 
(i) S is L.I subset of M; 
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(ii) For any x M, if  x = 
1

k

i i
i

r s

 , where riR, siS  ( i = 1,2,...., k) is an irredundant 

representation of  x, then  
( ) min{ ( )  |   1, 2, ....., }  and  ( ) max{ ( )  |   1, 2, ....., }.A B i A B ix s i k x s i k        

Note 3.2. If  B is L.I in A, then B = A on S. 
Example 3.3. Let M = R2 be a vector space over R. Let A = (A ,A) be an IFSM of M defined by    

1  0 0  0
( )      and  ( )   ,  .

0.5  0 0.2  0A A

if x if x
x x x M

if x if x
 

  
        

Let S = { 1 , 2 } be a subset of M, where 1 , 2 are L.I. elements of M. Let B be an IFS on S, 
defined by       

1  S 0  S
( )      and  ( )   ,  

0.5  S 0.2  S SB

if x if x
x x x M

if x if x 
  

        

Clearly,  B A|S . Let 0 x = r11+ r22 , be an irredundant representation, then 

1 2 1 2( ) min{ ( ),  ( )} 0.5 0.5 0.5  and  ( ) max{ ( ),  ( )} 1 1 1.A B B A B Bx x                
Therefore,  B is an linearly independent in A.  
Example 3.4. Let M ={ (a, a ) | a  R} be a vector subspace of  R2 over R. Let A = (A ,A) be an 
IFSM of M defined by  

1  0 0  0
( )      and  ( )   ,  .

0.5  0 0.2  0A A

if x if x
x x x M

if x if x
 

  
        

Let S = { 1} be a subset of M, where 1 is a non-zero element of M. Let B be the intuitionistic fuzzy 
characteristic function on S, i.e., 

1  S 0  S
( )      and  ( )   ,  

0  S 1  S SB

if x if x
x x x M

if x if x 
  

        

Clearly,  B A|S . Let (1,1) = r11 be an irredundant representation of (1,1), then 

1 1(1,1) ( ) 0 0.5  and  (1,1) ( ) 1 0.2.A B A B          
      

Therefore,  B is not linearly independent in A. 
Definition 3.5. Let A be an IFSM of a module M over a ring R, S be a subset of M and B    an IFS 
on S such that B  A|S. Then B is said to be a basis for A if S is a basis of M, B is linearly 
independent in A and < B > = A,  i.e.,  A is the smallest IFSM of M such thatB  A|S. 
Definition 3.6. Let A be an IFSM of a module M over a ring R. Then A is said to be free if A has a 
basis, i.e., there exists a basis S of M and an IFS B of S such that B  A|S and B is linearly 
independent such that < B > = A.    
Remark 3.7. An IFSM A of a module M over a ring R may or may not be free 
For example:  An IFSM A as in example (3.3) is free as B is L.I. in A and A = < B >, where as an 
IFSM A asin example (3.4) is not free, for < B > A.  
Definition 3.8. Let N and P be any two modules over a ring R andlet A be an IFSM of M over R. 
Then A is said to be intuitionistic fuzzy projective ( IF projective) submodule if for any IFSMs B of 
N, C of P, any epimorphism  p from C to B and homomorphism  from A to B, there exists a 
homomorphism  from A to C such that  p o  = .  
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In short the above diagram is commutative.  
Theorem 3.9. Every intuitionistic fuzzy free submodule of a module is IF projective. 
Proof. Let A=(A, A) be an intuitionistic fuzzy free submodule of a module M over a ring R.  Let 
{ mi |  i I} be a basis of M. Let N and P be any two modules over R.                  
Let B = (B ,B) , C = (C , C) be two IFSM of N and P respectively. Let p be an epimorphism from 
C to B and  be a homomorphism from A to B.  Now for any i J, there exists bi P such that  

(mi) = p(bi). Thus, for any 
i i

i J

m rm M


  , we define  : M  P by (m) =( 
i i

i J

rm

 ) = 

.i i
i J

rb

 Then it is easy to check that  is a homomorphism. 

 ,   ( ) ( ( )) ( ) ( ) ( ) ( ).i i i i i i i i i i
i J i J i J i J i J

Also po m p m p rb r p b r m rm rm m     
    

   
         

   
    

 
Hence  po = .Finally, we show that  is a homomorphism from A to C, for this we have 

    . Similarly, we get .C B B B A C Ao op o o po o o                                                

Therefore  is a homomorphism from A to C such that p o = .  Hence A is IF projective. 
Theorem 3.10. Let M be the direct sum of the modules {Mi| i J} over a ring R. Let A be an IFSM 
of M and Ai be that of Mi for all i J. Let 

i
i J

A A


 . Then  A is IF projective if and only if each Ai 

is IF projective. 
Proof. Let A = (A ,A) and Ai = (Ai , Ai) be IFSMs on M and Mi respectively for all i J. and  
letki : Ai A be the canonical monomorphism. First we assume that each Aiis IF projective. Let N 
and P be two modules over R and let B = (B ,B) , C = (C , C) be IFSMs of N and P respectively.  
Let  p : C  B be an epimormorhism, ki : Mi M be canonical injection  and   : A  B be a 
homomorphism. Then  

    ( ) ( ) ( ),    M .   
iB i i A i i A i i io ok m ok m m m      

   Therefore,  i.e.,  ( ) . Similarly, we can get .
i i iB i A B i A B i Ao ok o ok o ok          

 
Thus,   o ki is a homomorphism from Ai to B. Since Ai is IF projective, so there exists a 
homomorphism i : Ai C such that  poi =  o ki. 
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By proposition (2.8), there exists a unique homomorphism  : M   P such that  o ki = i, for all 
iJ.Since  p o oki = p o i=  o ki , so by uniqueness  of ki, we get  p o  = .Finally, we have to 
show that  is a homomorphism from A to C. For this we have

    .  Similarly, we can get .C B B B A C Ao op o o po o o                                  

Thus  is a homomorphism fromA to C such that  p o  = . Hence A is IF projective. 
Conversely, let A be IF projective. Let  i : Ai B be a homomorphism and  p : C  B be an 
epimorphism. Let pi: C  Ai be the canonical epimorphism. Now, 

     o .  Similarly, we can get .
iB i i B i i A i A B i i Ao op o op p o op           

This shows that i iop  is a homomorphism from A to B. Since A is IF projective, so there exists a 

homomorphism  : A  C such that  p o  = i iop . But pi o ki = I (identitymapping) and so p o 

oki = i i iop ok = i.  Let  o ki = i , then i : Mi P is a homomorphism. Also,  

 
( ) ( ) o .  Similarly, we can get .

i iC i C i C i A i A C i Ao o ok o k ok o              
Therefore,  i is a homomorphism from A to C.  Also, p o oki = ii mplies p o i = i. hence Ai is 
IF projective.  
Lemma 3.11. Let A module M over a ring R is the direct product of a family of modules {Mi | i J} 
over R, A be an IFSM of M and Ai be that of Mi. Let 

i
i J

A A


 and pi : A  Ai be the canonical 

epimorphism. Then for every IFSM B of any module N over R and for every family of 
homomorphism i : B  Ai, there exists a unique homomorphism   : B  A such that  pi o  = i 
.  
Proof. Let A = (A ,A) and Ai = (Ai , Ai) be IFSMs on M and Mi respectively for all iJ. We 
recall that for any mM,  pi(m) = m(i) Mi. Define  : N  M such that for each iJ, we 
have(n)(i) = i(n), nN. Then it is easy to check that  is a homomorphism. Also  (pi o )(n) = 
pi((n)) = (n)(i) = i(n)  and thus  pi o  = i. Finally,  

( ) o o(p o ) .  Similarly, we can get .
I iA A i A i B A Bo op o              

 
Therefore,:B  A such that  pi o  = i. Again, if   : B  A is another homomorphism such that  
pi o  = i, then   ((n))(i) = pi((n)) = (pi o )(n) = i(n) = ((n))(i) and so = . Hence  is 
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unique.  
Definition 3.12. Let N and P be any two modules over a ring R and A be an IFSM of a module M 
over R. Then A is said to be an intuitionistic fuzzy injective (IF injective) submodule if for any 
IFSM B of N, C of P, and momorphism  k from B to C and homomorphism  from B to A, there 
exists a homomorphism  from C to A such that  o k = . 

 
Theorem 3.13. Let M be the direct product of the modules {Mi | i J } over a ring R. Let  A be an 
IFSM of M and Ai be that of Mi for all i J. Let 

i
i J

A A


 . Then  A is IF injective if and only if 

each Ai is IF injective. 
Proof. Let A = (A ,A) and Ai = (Ai , Ai) be IFSMs on M and Mi respectively for all i J. Let  pi 
: A   Ai be the canonical epimorphism.  
First let each Ai be IF injective. SupposeN and P be any two modules over R and B and C be IFSM 
of N and P respectively. Letk: B  C be amonomorphism and  : B A be a homomorphism. Now 
pio: N Mi is a homomorphism such that 

( o ) ( op )o o .  Similarly, we can get ( o ) .
I i IA i A i A B A i Bo p o p            

 
Therefore, pi o  is a homomorphism from B to Ai. Since Ai is IF injective , there exists a 
homomorphism  i : C  Ai such that  i o k = pi o .  Also, by proposition (2.8), there exists a 
unique homomorphism   : C  A such that pi o  = i.       Now, i o k = pi o    (pio ) o 
k = pi o    pi o( o k) = pi o  and using the uniqueness of pi , we get   o k =.  

 
Finally, we have 

o ( op )o o(p o ) o .  Similarly, we can get o .
i i iA A i A i A i C A C               

Therefore,  : C  A is a homomorphism such that   o k = . Hence A is IF injective.   
Conversely, let A be IF injective. Let  k : B  C be a monomorphism, i : B  Ai a 
homomorphism, pi : M Mi the canonical epimorphism and  ki : Mi M the canonical 
monomorphism. Then ki o i : N  M is a homomorphism.  Also, 

 
o( o ) ( o ) o o .  Similarly, we can get o( o ) .

iA i i A i i A i B A i i Bk k k            
Therefore,  ki o iis a homomorphism from B to A. Since A is IF injective so there exists a 
homomorphism  : C  A such that   o k = ki o i.  
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Let pi o  = i, then i: P Mi is a homomorphism. Also,

o o(p o ) ( op )o o .  Similarly, we can get o .
i i i iA i A i A i A C A i C               

Therefore, i is a homomorphism from C to Ai. Also,  i o k = ( pi o ) o k = pi o ( o k) = pi o ( ki 
o i) = (pi o ki ) o i= I o i = i. Hence  Ai is IF injective.  
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