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Existence of solutions of general vector variational inequality 

problem 
 

Mohd. Furkan   
University Polytechnic, Aligarh Muslim University, Aligarh 202002, India 

E-mail: mohdfurkan786@gmail.com 

 

Abstract: In this paper, we prove a Minty-type lemma for a new class of general vector variational 

inequality problem in Banach spaces. Using this lemma and KKM-Fan Theorem, we prove an 

existence theorem for general vector variational inequality problem. Further, we prove an existence 

theorem without monotonicity condition. Furthermore, using minimax theorem and concept of 

escaping sequence, we prove some existence theorems for the general vector variational inequality 

problems. Our results generalize and unify the same well-known results for the vector variational 

inequality. 

 

Keywords: Operator of type ql, variational inequality, Minty-type lemma, KKM mapping. 
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1. Introduction 
The concept of vector variational inequality was introduced by Giannessi [8] in a finite 

dimensional space. Chen and Yang [4] considered general vector variational inequalities and 

vector complementary problems in infinite dimensional spaces and Chen [2] considered 

vector variational inequalities with a variable ordering structure. Yang [11] studied inverse 

vector variational inequalities and its relations with vector optimization problem. Through 

the last twenty years of development, existence results of solutions for several kinds of vector 

variational inequalities have been derived and the vector variational inequality problem has 

found many of its applications in vector optimization, set-valued optimization, approximate 

analysis of vector optimization problems and vector network equilibrium problem. Because 

of these applications, the study of vector variational inequalities has attracted wide attention. 

Throughout this paper, unless is otherwise specified, we assume that 𝑋 is a real Banach 

space and 𝑋∗ is the topological dual of 𝑋. We denote by 〈𝑥∗, 𝑥〉 the value of the linear and 

continuous functional 𝑥∗ ∈ 𝑋∗ at 𝑥 ∈ 𝑋. Consider the set 𝐾 ⊆ 𝑋 and let 𝐴:𝐾 → 𝑋∗ and 

𝑎: 𝐾 → 𝑋 be two given operators. Let 𝑌 be a real Banach space and 𝐶: 𝐾 → 2𝑌 be a set-

valued mapping such that for all 𝑥 ∈ 𝐾, 𝐶(𝑥) is a closed, convex and pointed cone with apex 

at origin and with nonempty interior i𝑛𝑡𝐶(𝑥). 
 

In 2011, László [9] studied the so-called general variational inequality of Stampacchia type 

(in short, GVI) which consists in finding an element 𝑥 ∈ 𝐾 such that  

〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ≥ 0, ∀𝑦 ∈ 𝐾. 
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Motivated by the work of László [9], we shall study the following general vector variational 

inequality problem (in short GVVI): Find 𝑥 ∈ 𝐾 such that 

 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), ∀𝑦 ∈ 𝐾. (1.1) 
 

We prove a Minty-type lemma for GVVI (1.1) in Banach spaces. Using this lemma and 

KKM-Fan Theorem, we prove an existence theorem for GVVI (1.1). Further, we prove an 

existence theorem without monotonicity condition. Furthermore, using minimax theorem and 

concept of escaping sequence, we prove some existence theorems for GVVI (1.1). Our results 

generalize and unify some well-known results for the vector variational inequality. 

 

2. Preliminaries 
We recall some concepts and results which are used in establishing the results for GVVI 

(1.1). 

 

Definition 2.1. [7] Let 𝐾 be a subset of a topological vector space 𝑋. A set-valued mapping 

𝑇:𝐾 → 2𝑋 is called a Knaster-Kuratowski-Mazurkiewieg mapping (KKM mapping) if for 

each nonempty finite subset {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊂ 𝐾 , we have C𝑜{𝑥1, . . . , 𝑥𝑛} ⊂ ⋃𝑛
𝑖=1 𝑇(𝑥𝑖), 

where C𝑜(𝐴) is the convex hull of 𝐴. 

 

Let 𝑋 be a real linear space. For 𝑥, 𝑦 ∈ 𝑋, let us denote by [𝑥, 𝑦] = {𝑧: = (1 − 𝑡)𝑥 + 𝑡𝑦: 𝑡 ∈
[0,1]} the closed line segment with the endpoints 𝑥 respectively 𝑦. The open line segment 

with the end points 𝑥  respectively 𝑦  is defined by (𝑥, 𝑦): = [𝑥, 𝑦]\{𝑥, 𝑦} = {𝑧:= (1 −
𝑡)𝑥 + 𝑡𝑦: 𝑡 ∈ (0,1)}. 
 

Definition 2.2. [9] Let 𝑋 and 𝑌 be two real linear spaces. An operator 𝑎:𝐾 ⊆ 𝑋 → 𝑌 is 

said to be of type ql if for every 𝑥, 𝑦 ∈ 𝐾 and every 𝑧 ∈ [𝑥, 𝑦]⋂ 𝐾, 𝑎(𝑧) ∈ [𝑎(𝑥), 𝑎(𝑦)]. 
Further, 𝑎  is said to be of type strict ql if for every 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦  and every 𝑧 ∈
(𝑥, 𝑦)⋂ 𝐾, 𝑎(𝑧) ∈ (𝑎(𝑥), 𝑎(𝑦)). 
 

Proposition 2.1. [9] Let 𝑎: 𝐼 ⊆ ℝ → ℝ be a function. Then 𝑎 is of type ql if and only if 𝑎 

is monotonic (increasing or decreasing). 

 

Example 2.1. The function 𝑎:ℝ → ℝ defined by 

 𝑎(𝑥) = {
𝑥2, if𝑥 > 0;
3𝑥, if𝑥 ≤ 0,

 

is of type ql as it is monotonic increasing. 

 

Definition 2.3. Let 𝑋 be a real Banach space, 𝑋∗ be its topological dual and let 𝐴:𝐾 ⊆ 𝑋 →
𝑋∗ be an operator. We say that 𝐴 is 

(i) monotone if for every 𝑥, 𝑦 ∈ 𝐾, 〈𝐴(𝑥) − 𝐴(𝑦), 𝑥 − 𝑦〉 ≥ 0; 

(ii) pseudomonotone if for every 𝑥, 𝑦 ∈ 𝐾, 〈𝐴(𝑥), 𝑥 − 𝑦〉 ≥ 0 implies 〈𝐴(𝑦), 𝑥 − 𝑦〉 ≥ 0. 
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Definition 2.4. [10] Let 𝑋 be a real Banach space, 𝑋∗ be its topological dual and let 𝐴:𝐾 ⊆
𝑋 → 𝑋∗ and 𝑎:𝐾 → 𝑋∗ be given operators. We say that 𝐴 is 

(i) monotone relative to 𝑎 if for every 𝑥, 𝑦 ∈ 𝐾, 〈𝐴(𝑥) − 𝐴(𝑦), 𝑎(𝑥) − 𝑎(𝑦)〉 ≥ 0; 

(ii) 𝑎 -pseudomonotone if for every 𝑥, 𝑦 ∈ 𝐾, 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ≥ 0  implies 

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ≥ 0. 

 

Definition 2.5. A mapping 𝑎: 𝑋 → 𝑌 is said to be completely continuous if and only if the 

weak convergence of {𝑥𝑛} to 𝑥 in 𝑋 implies the strong convergence of {𝑎(𝑥𝑛)} to 𝑎(𝑥) 
in 𝑌. 

Now, we define the following. 

 

Definition 2.6. Let 𝑋 and 𝑌 be two real linear spaces and 𝐾 ⊆ 𝑋. Let 𝑎, 𝑏: 𝐾 → 𝑋 be any 

two operators. The operator 𝑎 is said to be of type ql relative to 𝑏 if for every 𝑥, 𝑦 ∈ 𝐾 and 

every 𝑧 ∈ [𝑥, 𝑦]⋂ 𝐾, 𝑎(𝑧) ∈ [𝑏(𝑥), 𝑎(𝑦)]. Further, 𝑎 is said to be of type strict ql relative 

to 𝑏 if for every 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦 and every 𝑧 ∈ (𝑥, 𝑦)⋂ 𝐾, 𝑎(𝑧) ∈ (𝑏(𝑥), 𝑎(𝑦)). 
We introduce the following definition. 

 

Definition 2.7. Let 𝑋 be a real Banach space, 𝑋∗ be its topological dual and let 𝐴:𝐾 ⊆ 𝑋 →
𝑋∗. Let 𝑎, 𝑏: 𝐾 → 𝑋 be any two operators. Let 𝐶 be a closed, convex and pointed cone in 

𝑌. Then 𝐴 is said to be 𝐶(𝑥)-monotone relative to 𝑎 and 𝑏 if for all 𝑥, 𝑦 ∈ 𝐾, 〈𝐴(𝑦) −
𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∈ 𝐶(𝑥). 
 

Definition 2.8. Let 𝑋 be a real Banach space, 𝑋∗ be its topological dual and let 𝐴:𝐾 ⊆ 𝑋 →
𝑋∗ be an operator. We say that 𝐴 is 𝑣-hemicontinuous on 𝐾, if for any 𝑥, 𝑦, 𝑧 ∈ 𝐾 and 𝜆 ∈
(0,1), the mapping 𝜆 → 〈𝐴(𝑥 + 𝜆(𝑦 − 𝑥)), 𝑧〉 is continuous at 0+. 

   

Definition 2.9. [1] Let 𝑋 be a topological space and 𝐾 be a subset of 𝑋 such that 𝐾 =
⋃∞
𝑛=1 𝐾𝑛  where {𝐾𝑛}𝑛=1

∞  is an increasing (in the sense that 𝐾𝑛 ⊆ 𝐾𝑛+1 ) sequence of 

nonempty compact sets. A sequence {𝑥𝑛}𝑛=1
∞  in 𝐾 is said to be an escaping sequence from 

𝐾  (relative to {𝐾𝑛}𝑛=1
∞ ) iff for each 𝑛 = 1,2, . . ..  there exists 𝑚 > 0  such that 𝑥𝑘 ∉

𝐾𝑛, ∀𝑘 ≥ 𝑚. 

 

Now, we need the following lemma and theorems to prove our existence results. 

Lemma 2.1. [3] Let 𝐶 be an ordering cone in 𝑌. Then for any 𝑎, 𝑏, 𝑐 ∈ 𝑌, 

(i) 𝑎 ∉ 𝑏 + 𝐶 implies that 𝑎 + 𝑐 ∉ 𝑏 + 𝑐 + 𝐶; 

(ii) 𝑎 ∉ 𝑏 + i𝑛𝑡𝐶 implies that 𝑎 + 𝑐 ∉ 𝑏 + 𝑐 + i𝑛𝑡𝐶; 

(iii) 𝑎 ∉ 𝑏 − 𝐶 implies that 𝑎 + 𝑐 ∉ 𝑏 + 𝑐 − 𝐶; 

(iv) 𝑎 ∉ 𝑏 − i𝑛𝑡𝐶 implies that 𝑎 + 𝑐 ∉ 𝑏 + 𝑐 − i𝑛𝑡𝐶. 

 

Theorem 2.1. (KKM-Fan Lemma [7]) Let 𝐾 be a subset of a topological vector space 𝑋 

and let 𝑇: 𝐾 → 2𝑋 be a KKM mapping. If for each 𝑥 ∈ 𝐾, 𝑇(𝑥) is closed and for at least one 
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𝑥 ∈ 𝐾, 𝑇(𝑥) is compact, then ⋂𝑥∈𝐾 𝑇(𝑥) ≠ ∅. 

Theorem 2.2. [9] Let 𝑋 and 𝑌 be two real linear spaces, let 𝐾 ⊆ 𝑋 be convex and let 

𝑎: 𝐾 → 𝑌 be an operator of type ql. Then for every 𝑛 ∈ ℕ, every 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐾 and 

every 𝑥 ∈ C𝑜{𝑥1, 𝑥2, . . . , 𝑥𝑛}, we have 𝑎(𝑥) ∈ C𝑜{𝑎(𝑥1), 𝑎(𝑥2), . . . , 𝑎(𝑥𝑛)}. 
  

Theorem 2.3. [7] Let 𝐾 be a nonempty compact and convex set in a Hausdorff topological 

vector space 𝑋. Let 𝐵 be a subset of 𝐾 × 𝐾 having the following properties: 

(i) for each 𝑥 ∈ 𝐾, (𝑥, 𝑥) ∈ 𝐵; 

(ii) for each 𝑥 ∈ 𝐾, the set 𝐵𝑥 = {𝑦 ∈ 𝐾: (𝑥, 𝑦) ∈ 𝐵} is closed; 

(iii) for each 𝑦 ∈ 𝐾, the set 𝐵𝑦 = {𝑥 ∈ 𝐾: (𝑥, 𝑦) ∉ 𝐵} is convex. 

Then there exists a point 𝑦0 ∈ 𝐾 such that 𝐾 × {𝑦0} ⊂ 𝐵. 

 

Theorem 2.4. [6, 5] Let 𝐾 be a nonempty convex subset of a Hausdorff topological vector 

space 𝑋. Let 𝑇:𝐾 → 2𝑋 be a set-valued mapping such that 

(i) for each 𝑥 ∈ 𝐾, 𝑇(𝑥) is nonempty convex subset of 𝐾; 

(ii) for each 𝑦 ∈ 𝐾, 𝑇−1(𝑦) = {𝑥 ∈ 𝐾: 𝑦 ∈ 𝑇(𝑥)} contains an open set 𝑂𝑦  which may be 

empty; 

(iii) ⋃𝑦∈𝐾 𝑂𝑦 = 𝐾; 

(iv) there exists a nonempty compact and convex subset 𝐾1 of 𝐾 and points {𝑥1, . . . , 𝑥𝑛} in 

𝐾 such that  

𝐷 = ⋂

𝑥∈𝐾1

𝑂𝑥
𝑐 ⊂⋃

𝑛

𝑖=1

𝑂𝑥𝑖 , 

where 𝑂𝑥
𝑐 is the complement of 𝑂𝑥 in 𝐾. Then there exists a point 𝑥0 ∈ 𝐾 such that 𝑥0 ∈

𝑇(𝑥0). 
 

3. Existence of the Solutions of General Vector Variational Inequalities 

Now, we prove the Minty-type Lemma.  

Lemma 3.1. Let 𝑋 and 𝑌 be two Banach spaces and 𝐶 be a closed, convex and pointed 

cone in 𝑌. Let 𝐾 be any convex subset of 𝑋 and 𝑏:𝐾 → 𝑋 be a given mapping. Let 𝑎: 𝐾 →
𝑋 be a given operator which is of type ql relative to 𝑏. Let 𝐴:𝐾 → 𝑋∗ be 𝐶(𝑥)-monotone 

relative to 𝑎 and 𝑏 and 𝑣-hemicontinuous on 𝐾. Then the following are equivalent: 

(i) 𝑥 ∈ 𝐾, 〈𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), ∀𝑦 ∈ 𝐾; 
(ii) 𝑥 ∈ 𝐾, 〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), ∀𝑦 ∈ 𝐾. 
 

Proof. Since 𝐴 is 𝐶(𝑥)-monotone relative to 𝑎 and 𝑏, we have for all 𝑥, 𝑦 ∈ 𝐾,  

〈𝐴(𝑦) − 𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∈ 𝐶(𝑥). 
This implies that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∈ 〈𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 + 𝐶(𝑥). 
Now, let for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
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Then by Lemma 2.1, we have for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Conversely, suppose that for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Since 𝐾 is convex, then for any 𝜆 ∈ (0,1) and 𝑥, 𝑦 ∈ 𝐾,  

〈𝐴(𝜆𝑦 + (1 − 𝜆)𝑥), 𝑎(𝜆𝑦 + (1 − 𝜆)𝑥) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), 
i.e.  

〈𝐴(𝑥 + 𝜆(𝑦 − 𝑥)), 𝑎(𝑥 + 𝜆(𝑦 − 𝑥)) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Since 𝑎 is of type ql relative to 𝑏, we have for all 𝑥, 𝑦 ∈ 𝐾,  

𝑎(𝑥 + 𝜆(𝑦 − 𝑥)) ∈ [𝑏(𝑥), 𝑎(𝑦)], 
𝑎(𝑥 + 𝜆(𝑦 − 𝑥)) = (1 − 𝑡)𝑏(𝑥) + 𝑡𝑎(𝑦), for some 𝑡 ∈ (0,1), 

i.e.  

𝑎(𝑥 + 𝜆(𝑦 − 𝑥)) = 𝑏(𝑥) + 𝑡(𝑎(𝑦) − 𝑏(𝑥)). 
Therefore,  

〈𝐴(𝑥 + 𝜆(𝑦 − 𝑥)), 𝑡(𝑎(𝑦) − 𝑏(𝑥))〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), 
〈𝐴(𝑥 + 𝜆(𝑦 − 𝑥)), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 

Since 𝐴 is 𝑣-hemicontinuous, then as 𝜆 ⟶ 0+, we have for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
This completes the proof. 

 

Corollary 3.1. Let 𝑋 and 𝑌 be two Banach spaces and 𝐶 be a closed, convex and pointed 

cone in 𝑌. Let 𝐾 be any convex subset of 𝑋. Let 𝑎:𝐾 → 𝑋 be a given operator which is of 

type ql. Let 𝐴:𝐾 → 𝑋∗ be 𝐶(𝑥)-monotone relative to 𝑎 and 𝑣-hemicontinuous on 𝐾. Then 

the following are equivalent: 

(i) 𝑥 ∈ 𝐾, 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), ∀𝑦 ∈ 𝐾; 
(ii) 𝑥 ∈ 𝐾, 〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), ∀𝑦 ∈ 𝐾. 
  Proof. The corollary can be proved by taking 𝑎 = 𝑏 in Lemma 3.1. 

To prove the next lemma, we set for any 𝑦 ∈ 𝐾,  

𝐹1(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}, 
and  

𝐹2(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}. 
Now, we equip 𝑋 with a weak topology, 𝑌 with a strong topology and 𝑋∗ with the strong 

operator topology. 

Now, we prove the following lemma. 

 

Lemma 3.2. Let 𝑋 be a Banach space and 𝐾 ⊂ 𝑋 be weakly compact. Let 𝐴:𝐾 → 𝑋∗ be a 

vector valued function and let for 𝑦 ∈ 𝐾, 𝐴(𝑦) be a completely continuous operator. Let 

𝑎: 𝐾 → 𝑋 be a given operator and 𝑏:𝐾 → 𝑋 be upper semicontinuous. Let the set-valued 

function 𝑊:𝐾 → 2𝑌  with 𝑊(𝑥) = 𝑌\(−𝑖𝑛𝑡𝐶(𝑥))  for every 𝑥 ∈ 𝐾  be upper 

semicontinuous on 𝐾. Then 𝐹2(𝑦) is weakly closed for every 𝑦 ∈ 𝐾. 

Proof. Let 𝐹2(𝑦)  be the weakly closed hull of 𝐹2(𝑦) . Then there exists a sequence 
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{𝑥𝑘}𝑘∈ℕ ⊂ 𝐹2(𝑦) which converges weakly to some 𝑥 ∈ 𝐾. Then, for every 𝑦 ∈ 𝐾, we have  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥𝑘)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑘), 
or  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥𝑘)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑘)). 
This means that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥𝑘)〉 ∈ 𝑊(𝑥𝑘) 
Since 𝐴(𝑦) is completely continuous then by upper semicontinuity of 𝑊 and 𝑏, we have  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∈ 𝑊(𝑥). 
This implies that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑏(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Hence, 𝑥 ∈ 𝐹2(𝑦), proving that 𝐹2(𝑦) is weakly closed for every 𝑦 ∈ 𝐾. 

 

Now, we give the existence of solution of GVVI (1.1). 

 

Theorem 3.1. Let 𝑋 and 𝑌 be Banach spaces and 𝐾 ⊂ 𝑋 be nonempty, convex and weakly 

compact. Let 𝐶:𝑋 → 2𝑌  be a set-valued mapping such that for every 𝑥 ∈ 𝑋, 𝐶(𝑥)  is a 

closed, convex and pointed cone with non empty interior int𝐶(𝑥). Let the operator 𝑎: 𝐾 → 𝑋 

be of the type ql which is upper semicontinuous. Let 𝐴:𝐾 → 𝑋∗ be 𝐶(𝑥)-monotone relative 

to 𝑎  and 𝑣 -hemicontinuous on 𝐾  and let for every 𝑦, 𝐴(𝑦)  be completely continuous 

operator. Let 𝑊:𝐾 → 2𝑌 be a set-valued mapping with 𝑊(𝑥) = 𝑌\(−𝑖𝑛𝑡𝐶(𝑥)) for every 

𝑥 ∈ 𝐾 which is upper semicontinuous on 𝐾. Then GVVI (1.1) admits solution. 

Proof. Define the set-valued mappings 𝐹1, 𝐹2: 𝐾 → 2𝐾 by  

𝐹1(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}, 
and  

𝐹2(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)} 
respectively. Now, we show that 𝐹1 is a KKM mapping on 𝐾. Consider 

𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐾,∑

𝑛

𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑛 

Let 

𝑥 =∑

𝑛

𝑖=1

𝛼𝑖𝑥𝑖  

We show that 𝑥 ∉ 𝐹1(𝑥𝑖), for 𝑖 = 1,2, . . . , 𝑛. Let us suppose on contrary 𝑥 ∈ 𝐹1(𝑥𝑖), for 

some 𝑖. Then  

 〈𝐴(𝑥), 𝑎(𝑥𝑖) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥), f𝑜𝑟𝑖 = 1,2, . . . , 𝑛. (3.1) 

 

Since 𝑎 is of type ql, then by Theorem 2.2, we have  

𝑎(𝑥) ∈ C𝑜{𝑎(𝑥1), 𝑎(𝑥2), . . . , 𝑎(𝑥𝑛)}. 
This implies that  
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𝑎(𝑥) =∑

𝑛

𝑖=1

𝛼𝑖𝑎(𝑥𝑖). 

On multiplying the inequalities in (3.1), one by one with 𝛼𝑖 and then adding, we have  

〈𝐴(𝑥),∑

𝑛

𝑖=1

𝛼𝑖𝑎(𝑥𝑖) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥), 

〈𝐴(𝑥), 𝑎(𝑥) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥), 
which is contradiction. Therefore  

C𝑜{𝑎(𝑥1), 𝑎(𝑥2), . . . , 𝑎(𝑥𝑛)} ⊂⋃

𝑛

𝑖=1

𝐹1(𝑥𝑖). 

Hence, 𝐹1 is a KKM mapping on 𝐾. 

 

Now, we show that 𝐹1(𝑦) ⊂ 𝐹2(𝑦), for 𝑦 ∈ 𝐾. For this, let 𝑥 ∈ 𝐹1(𝑦). Then  

〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Now, 𝐴 is 𝐶(𝑥)-monotone on 𝐾, we have  

〈𝐴(𝑦) − 𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ 𝐶(𝑥). 
This implies that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 + 𝐶(𝑥). 
By Lemma 2.1, we obtain  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Therefore, 𝑥 ∈ 𝐹2(𝑦). Hence, 𝐹1(𝑦) ⊂ 𝐹2(𝑦). This means that 𝐹2 is also a KKM mapping.  

 

By using Corollary 3.1, we have  

⋂

𝑦∈𝐾

𝐹1(𝑦) = ⋂

𝑦∈𝐾

𝐹2(𝑦). 

Now, by Lemma 3.2, 𝐹2(𝑦) is weakly closed for every 𝑦 ∈ 𝐾. Since 𝐾 is weakly compact 

and 𝐹2(𝑦) ⊂ 𝐾 is weakly closed, we have that 𝐹2(𝑦) is weakly compact. If we equip 𝑋 

with weak topology, we can use the KKM Theorem for 𝐹2. This, in turn, implies that  

⋂

𝑦∈𝐾

𝐹2(𝑦) ≠ ∅. 

Therefore,  

⋂

𝑦∈𝐾

𝐹1(𝑦) ≠ ∅. 

Then, there exists 𝑥0 ∈ 𝐾 such that 𝑥0 ∈ ⋂𝑦∈𝐾 𝐹1(𝑦). Hence, for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥0). 
This completes the proof. 

 

Corollary 3.2. Let 𝑋 be a reflexive Banach space and 𝑌 be a Banach space. Let 𝐾 ⊂ 𝑋 be 

nonempty bounded, closed and convex. Let 𝐶:𝑋 → 2𝑌 be a set-valued mapping such that 
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for every 𝑥 ∈ 𝑋, 𝐶(𝑥) is a closed, convex and pointed cone with non-empty interior int𝐶(𝑥). 
Let the operator 𝑎: 𝐾 → 𝑋 be of the type ql which is upper semicontinuous. Let 𝐴:𝐾 → 𝑋∗ 
be 𝐶(𝑥)-monotone relative to 𝑎 and 𝑣-hemicontinuous on 𝐾 and let for every 𝑦, 𝐴(𝑦) be 

completely continuous operator. Let 𝑊:𝐾 → 2𝑌  be a set-valued mapping with 𝑊(𝑥) =
𝑌\(−𝑖𝑛𝑡𝐶(𝑥)) for every 𝑥 ∈ 𝐾 which is upper semicontinuous on 𝐾. Then GVVI (1.1) 

admits solution. 

 

Proof. Since a bounded, closed and convex subset of a reflexive Banach space is weakly 

compact, we obtain that 𝐾 is weakly compact. Now, the proof is similar to that of Theorem 

3.1. 

 

Next, we give the following theorem. 

Theorem 3.2. Let 𝑋 be a reflexive Banach space and 𝑌 be a Banach space. Let 𝐶:𝐾 → 2𝑌 

be a set-valued mapping such that for all 𝑥 ∈ 𝐾, 𝐶(𝑥) is a closed, convex and pointed cone 

with nonempty interior i𝑛𝑡𝐶(𝑥). Let 𝐾 be any nonempty closed, bounded and convex subset 

of 𝑋 with 0 ∈ 𝐾. Let 𝐴:𝐾 → 𝑋∗ be 𝐶(𝑥)-monotone relative to 𝑎, 𝑣-hemicontinuous and 

let for every 𝑦, 𝐴(𝑦) be completely continuous operator. Let the operator 𝑎:𝐾 → 𝑋 be of 

the type ql which is upper semicontinuous. If there exists some 𝑟 > 0 such that for all 𝑦, 𝑧 ∈
𝐾,  

 〈𝐴(𝑧), 𝑎(𝑦) − 𝑎(0)〉 ∈ i𝑛𝑡𝐶(𝑧), (3.2) 
with ∥ 𝑦 ∥= 𝑟, then there exists 𝑥̅ ∈ 𝐾 such that for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥̅), 𝑎(𝑦) − 𝑎(𝑥̅)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥̅). 
Proof. Let 𝐵𝑟 = {𝑥 ∈ 𝑋: ∥ 𝑥 ∥≤ 𝑟}. As 𝐾 and 𝐵𝑟  are closed and bounded subsets of the 

reflexive Banach space 𝑋, we have that 𝐾 ∩ 𝐵𝑟 is weakly compact. Then by Corollary 3.2, 

there exists 𝑥𝑟 ∈ 𝐾 ∩ 𝐵𝑟 such that for all 𝑦 ∈ 𝐾 ∩ 𝐵𝑟, 

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟). 
On putting 𝑦 = 0, we have  

〈𝐴(𝑥𝑟), 𝑎(0) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟), 
i.e.  

〈𝐴(𝑥𝑟), 𝑎(0) − 𝑎(𝑥𝑟)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)). (3.3) 
Condition (3.2) implies that  

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(0)〉 ∈ i𝑛𝑡𝐶(𝑥𝑟). (3.4) 
On combining (3.3) and (3.4), we obtain  

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(0)〉 + 〈𝐴(𝑥𝑟), 𝑎(0) − 𝑎(𝑥𝑟)〉 ∈ i𝑛𝑡𝐶(𝑥𝑟) + 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)). 
This implies that  

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(𝑥𝑟)〉 ∈ i𝑛𝑡𝐶(𝑥𝑟) + 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)). 
Since i𝑛𝑡𝐶(𝑥𝑟) + 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)) ⊆ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)), this can be written as  

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(𝑥𝑟)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑟)). 
This implies that  

〈𝐴(𝑥𝑟), 𝑎(𝑦) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟). 
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Since 𝑎 is of type ql and ∥ 𝑥 ∥≤ 𝑟, then for any 𝑧 ∈ 𝐾 and 𝜆 ∈ (0,1) sufficiently small, we 

can write  

𝑎(𝑦) = (1 − 𝜆)𝑎(𝑥𝑟) + 𝜆𝑎(𝑧). 
Therefore  

〈𝐴(𝑥𝑟), (1 − 𝜆)𝑎(𝑥𝑟) + 𝜆𝑎(𝑧) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟). 
This implies that  

〈𝐴(𝑥𝑟), 𝜆(𝑎(𝑧) − 𝑎(𝑥𝑟))〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟), 
i.e.  

𝜆〈𝐴(𝑥𝑟), 𝑎(𝑧) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟), 
or  

〈𝐴(𝑥𝑟), 𝑎(𝑧) − 𝑎(𝑥𝑟)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑟). 
This completes the proof. 

 

Now, we prove the following theorem in more general setting. 

 

Theorem 3.3. Let 𝑋 be a Hausdorff topological vector space and 𝑌 be a Banach space. Let 

𝐾 be a nonempty compact and convex subset of 𝑋. Let 𝐴:𝐾 → 𝑋∗ be a nonlinear upper 

semicontinuous mapping. Let 𝐶:𝑋 → 2𝑌  be a set-valued upper semicontinuous mapping 

such that for every 𝑥 ∈ 𝑋, 𝐶(𝑥) is a closed, convex and pointed cone with nonempty interior 

i𝑛𝑡𝐶(𝑥). Let the operator 𝑎:𝐾 → 𝑋 be of type ql which is upper semicontinuous. Then 

GVVI (1.1) has a solution. 

 

Proof. Let assume for every 𝑦, 𝑧 ∈ 𝐾,  

𝐵 = {(𝑦, 𝑧) ∈ 𝐾 × 𝐾: 〈𝐴(𝑧), 𝑎(𝑦) − 𝑎(𝑧)〉 ∉ −𝑖𝑛𝑡𝐶(𝑧)}. 
This implies that  

(𝑦, 𝑦) ∈ 𝐵, f𝑜𝑟𝑒𝑣𝑒𝑟𝑦𝑦 ∈ 𝐾. 
Now, define a set  

𝐵𝑦 = {𝑧 ∈ 𝐾: 〈𝐴(𝑧), 𝑎(𝑦) − 𝑎(𝑧)〉 ∉ −𝑖𝑛𝑡𝐶(𝑧), ∀𝑦 ∈ 𝐾}. 

We show that 𝐵𝑦 is a closed set. Take any sequence {𝑧𝑛}𝑛∈ℕ in 𝐵𝑦 converging to 𝑧. Then 

for every 𝑦 ∈ 𝐾, we have  

〈𝐴(𝑧𝑛), 𝑎(𝑦) − 𝑎(𝑧𝑛)〉 ∉ −𝑖𝑛𝑡𝐶(𝑧𝑛). 
Now, by the upper semi continuity of 𝐴, 𝑎 and 𝐶, we have for every 𝑦 ∈ 𝐾,  

〈𝐴(𝑧), 𝑎(𝑦) − 𝑎(𝑧)〉 ∉ −𝑖𝑛𝑡𝐶(𝑧). 
This means that 𝑧 ∈ 𝐵𝑦, proving that 𝐵𝑦 is closed. 

Next, we define a set  

𝐵𝑧 = {𝑦 ∈ 𝐾: 〈𝐴(𝑧), 𝑎(𝑦) − 𝑎(𝑧)〉 ∈ −𝑖𝑛𝑡𝐶(𝑧), ∀𝑧 ∈ 𝐾}. 
We show that 𝐵𝑧 is convex.  

For this, let 𝑦1, 𝑦2 ∈ 𝐵𝑧 and 𝜆 ∈ (0,1). As 𝑦1, 𝑦2 ∈ 𝐾, then 𝜆𝑦1 + (1 − 𝜆)𝑦2 ∈ 𝐾. 

Since 𝑎 is type ql, we have  
〈𝐴(𝑧), 𝑎(𝜆𝑦1 + (1 − 𝜆)𝑦2) − 𝑎(𝑧)〉 = 〈𝐴(𝑧), 𝑡𝑎(𝑦1) + (1 − 𝑡)𝑎(𝑦2) − 𝑎(𝑧)〉, for some 𝑡

∈ (0,1), 
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= 𝑡〈𝐴(𝑧), 𝑎(𝑦1) − 𝑎(𝑧)〉 + (1 − 𝑡)〈𝐴(𝑧), 𝑎(𝑦2) − 𝑎(𝑧)〉, for some 𝑡 ∈ (0,1), 
∈ −𝑡i𝑛𝑡𝐶(𝑧) − (1 − 𝑡)i𝑛𝑡𝐶(𝑧) = −𝑖𝑛𝑡𝐶(𝑧), 

 i.e.  

〈𝐴(𝑧), 𝑎(𝜆𝑦1 + (1 − 𝜆)𝑦2) − 𝑎(𝑧)〉 ∈ −𝑖𝑛𝑡𝐶(𝑧). 
This implies that  

𝜆𝑦1 + (1 − 𝜆)𝑦2 ∈ 𝐵𝑧. 
Hence, 𝐵𝑧 is a convex set for every 𝑧 ∈ 𝐾. 

 

Now, by using Theorem 2.3, there exists a point 𝑥0 ∈ 𝐾 such that 𝐾 × {𝑥0} ⊂ 𝐵  i.e. there 

exists 𝑥0 ∈ 𝐾 such that  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥0), 
which completes the proof. 

 

Now, we prove the following theorem. 

Theorem 3.4. Let 𝐾 be a nonempty closed and convex subset of a Hausdorff topological 

vector space 𝑋. Let 𝑌 be an ordered topological vector space and let 𝐶: 𝐾 → 2𝑌 be a set-

valued mapping such that for all 𝑥 ∈ 𝐾, 𝐶(𝑥) is a closed, convex and pointed cone with 

nonempty interior i𝑛𝑡𝐶(𝑥) . Let the operator 𝑎:𝐾 → 𝑋  be of type ql which is upper 

semicontinuous. Let 𝐴:𝐾 → 𝑋∗ is 𝐶(𝑥)-monotone relative to 𝑎 and 𝑣-hemicontinuous on 

𝐾. For each 𝑦 ∈ 𝐾, define  

𝐹1(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}, 
𝐹2(𝑦) = {𝑥 ∈ 𝐾: 〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}. 

Further assume that there exists a nonempty compact and convex set 𝐾1 ⊂ 𝐾 such that the 

following condition is satisfied: 

There exist points 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝑘 with  

⋂

𝑦∈𝐾1

𝐹1(𝑦) ⊂⋃

𝑛

𝑖=1

(𝐹1(𝑣𝑖))
𝑐 . (3.5) 

Then the solution set 𝑆 of GVVI (1.1) is nonempty. 

Proof. We show that 𝐹2(𝑦) is closed for each 𝑦 ∈ 𝐾. Take any sequence {𝑧𝑛}𝑛∈ℕ in 𝐹2(𝑦) 
such that 𝑧𝑛 → 𝑧0. Then for each 𝑦 ∈ 𝐾,  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑧𝑛)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
This implies that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑧𝑛)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥)). 
Since 𝑌\(−𝑖𝑛𝑡𝐶) is closed and 𝑎 is upper semicontinuous, we have  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑧0)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥)), 
i.e.  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑧0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥), 
which implies that 𝑧0 ∈ 𝐹2(𝑦) showing that 𝐹2(𝑦) is closed. 

 

Next, we show that 𝐹1(𝑦) ⊂ 𝐹2(𝑦) for each 𝑦 ∈ 𝐾. Take any 𝑥 ∈ 𝐹1(𝑦). Therefore  
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〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Since 𝐴 is 𝐶-monotone on 𝐾, we have for each 𝑥, 𝑦 ∈ 𝐾,  

〈𝐴(𝑦) − 𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ 𝐶(𝑥). 
This implies that  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 + 𝐶(𝑥). 
Therefore  

〈𝐴(𝑦), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Then 𝑥 ∈ 𝐹2(𝑦) proving that 𝐹1(𝑦) ⊂ 𝐹2(𝑦) for each 𝑦 ∈ 𝐾. 

Now, suppose that condition (3.5) is satisfied. Consider the following condition  

 〈𝐴(𝑥), 𝑎(𝑥) − 𝑎(𝑦)〉 ∈ i𝑛𝑡𝐶(𝑥), (3.6) 
 

which may or may not hold. We prove the existence of solution in either case. Suppose that 

condition (3.6) does not hold. Then, there exists 𝑥0 ∈ 𝐾 such that for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥0), 𝑎(𝑥0) − 𝑎(𝑦)〉 ∉ i𝑛𝑡𝐶(𝑥), 
which, in turn, implies that  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). 
Then 𝑥0 ∈ 𝑆, the solution set of GVVI (1.1). 

Now, suppose that condition (3.6) holds. In view of the Theorem 2.4, it is sufficient to prove 

that there exists 𝑥0 ∈ 𝐾 such that  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥). (3.7) 
If there is no solution to the above problem (3.7), then for all 𝑥 ∈ 𝐾, we have 

〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥), 
i.e.  

〈𝐴(𝑥), 𝑎(𝑥) − 𝑎(𝑦)〉 ∈ i𝑛𝑡𝐶(𝑥). 
Now, define a set-valued mapping 𝑇: 𝐾 → 2𝐾 by  

𝑇(𝑥) = {𝑦 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥)}. 
Clearly, 𝑇(𝑥) is nonempty. Now, we prove that 𝑇(𝑥) is convex for all 𝑥 ∈ 𝐾. Let 𝑦1, 𝑦2 ∈
𝑇(𝑥) and 𝜆 ∈ (0,1). Since 𝐾 is convex and 𝑇(𝑥) ⊆ 𝐾, then 𝜆𝑦1 + (1 − 𝜆)𝑦2 ∈ 𝐾. Now, 

as 𝑎 is of type ql, we have  
〈𝐴(𝑥), 𝑎(𝜆𝑦1 + (1 − 𝜆)𝑦2) − 𝑎(𝑥)〉 = 〈𝐴(𝑥), 𝑡𝑎(𝑦1) + (1 − 𝑡)𝑎(𝑦2) − 𝑎(𝑥)〉, for some 𝑡

∈ (0,1), 
= 𝑡〈𝐴(𝑥), 𝑎(𝑦1) − 𝑎(𝑥)〉 + (1 − 𝑡)〈𝐴(𝑥), 𝑎(𝑦2) − 𝑎(𝑥)〉, for some  𝑡 ∈ (0,1), 

∈ −𝑡 i𝑛𝑡𝐶(𝑥) − (1 − 𝑡)i𝑛𝑡𝐶(𝑥) = −𝑖𝑛𝑡𝐶(𝑥). 
This implies that  

𝜆𝑦1 + (1 − 𝜆)𝑦2 ∈ 𝑇(𝑥). 
Hence, 𝑇(𝑥) is a convex set for all 𝑥 ∈ 𝐾. 

Further, for each 𝑦 ∈ 𝐾,  

𝑇−1(𝑦) = {𝑥 ∈ 𝐾: 𝑦 ∈ 𝑇(𝑥)}, 
= {𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥)}, 
= {𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)}𝑐 , 

⊃ ({𝑥 ∈ 𝐾: 〈𝐴(𝑥), 𝑎(𝑦) − 𝑎(𝑥)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥)})𝑐 , 
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= 𝐹1(𝑦)
𝑐 ≡ 𝑂(𝑦), 

 which is relatively open in 𝐾. 

Since, condition (3.6) holds then for each 𝑦 ∈ 𝐾, there exists 𝑥 ∈ 𝐾 such that  

𝑥 ∈ 𝐹2(𝑦)
𝑐 ⊂ 𝐹1(𝑦)

𝑐 , 
and hence  

⋃

𝑦∈𝐾

𝐹1(𝑦)
𝑐 =⋃

𝑦∈𝐾

𝑂(𝑦) = 𝐾. 

Now, from condition (3.5), there exists points 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝐾 such that  

⋂

𝑦∈𝐾1

𝑂(𝑦)𝑐 ⊂⋃

𝑛

𝑖=1

𝑂(𝑣𝑖). 

Thus, all the assumptions of Theorem 2.4 are satisfied. Hence there exists 𝑥0 ∈ 𝑇(𝑥), 
i.e.  

〈𝐴(𝑥0), 𝑎(𝑥0) − 𝑎(𝑥0)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥), 
which is a contradiction. 

 

Hence, the problem (3.7) has a solution and the theorem is proved. 

Next, using the concept of escaping sequence, we show the existence of solution. 

 

Theorem 3.5. Let 𝑋 be a Hausdorff topological vector space, let 𝐾 be a subset of 𝑋 such 

that 𝐾 = ⋃∞
𝑛=1 𝐾𝑛  where {𝐾𝑛}𝑛=1

∞  is an increasing sequence of nonempty, compact and 

convex subsets of 𝐾 and let 𝑌 be a regular topological vector space. Let 𝐴:𝐾 → 𝑋∗ be 

𝐶(𝑥)-monotone relative to 𝑎, 𝑣-hemicontinuous and completely continuous and let 𝑎: 𝐾 →
𝑋 be of the type ql which is upper semicontinuous on 𝐾. Let 𝐶: 𝐾 → 2𝑌 be a set-valued 

mapping such that for all 𝑥 ∈ 𝐾, 𝐶(𝑥) is a closed, convex and pointed cone with nonempty 

interior i𝑛𝑡𝐶(𝑥)  and let 𝑊:𝐾 → 2𝑌 , defined by 𝑊(𝑥) = 𝑌\(−𝑖𝑛𝑡𝐶(𝑥)) , be upper 

semicontinuous. Further, let for each sequence {𝑥𝑛}𝑛=1
∞  in 𝐾 with 𝑥𝑛 ∈ 𝐾𝑛, ∀𝑛 = 1,2,3, . .., 

which is escaping from 𝐾 relative to {𝐾𝑛}𝑛=1
∞ , there exists 𝑚 ∈ ℕ and 𝑧𝑚 ∈ 𝐾𝑚 such that  

 〈𝐴(𝑥𝑚), 𝑎(𝑧𝑚) − 𝑎(𝑥𝑚)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥𝑚). (3.8) 
 

Then there exists 𝑥0 ∈ 𝐾 such that for all 𝑦 ∈ 𝐾,  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥0). 
Proof. By using Theorem 3.3, for all 𝑛 ∈ ℕ, there exists 𝑥𝑛 ∈ 𝐾𝑛 such that for all 𝑧 ∈ 𝐾𝑛, 

we have  

 〈𝐴(𝑥𝑛), 𝑎(𝑧) − 𝑎(𝑥𝑛)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑛). (3.9) 

 

Suppose that the sequence {𝑥𝑛}𝑛=1
∞  be escaping from 𝐾 relative to {𝐾𝑛}𝑛=1

∞ . Then by the 

given condition (3.8), there exists 𝑧𝑚 ∈ 𝐾𝑚 such that  

〈𝐴(𝑥𝑚), 𝑎(𝑧𝑚) − 𝑎(𝑥𝑚)〉 ∈ −𝑖𝑛𝑡𝐶(𝑥𝑚), 
which contradicts (3.9). Therefore, {𝑥𝑛}𝑛=1

∞  is not an escaping sequence from 𝐾 relative to 

{𝐾𝑛}𝑛=1
∞ . Then there exists 𝑝 ∈ ℕ and there is some subsequence {𝑥𝑗𝑛} of {𝑥𝑛}𝑛=1

∞  which 
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must lie entirely in 𝐾𝑝. Since 𝐾𝑝 is compact, there is a subsequence {𝑥𝑖𝑛}𝑖𝑛∈Γ of {𝑥𝑗𝑛} in 

𝐾𝑝 and there exists 𝑥 ∈ 𝐾𝑝 such that 𝑥𝑖𝑛 → 𝑥 where 𝑖𝑛 → ∞. Since {𝐾𝑛}𝑛=1
∞  is increasing, 

for all 𝑦 ∈ 𝐾  there exists 𝑖0 ∈ Γ with 𝑖0 > 𝑝  such that 𝑦 ∈ 𝐾𝑖0  and for all 𝑖𝑛 ∈ Γ and 

𝑖𝑛 > 𝑖0, we have 𝑦 ∈ 𝐾𝑖0 ⊆ 𝐾𝑖𝑛 such that  

〈𝐴(𝑥𝑖𝑛), 𝑎(𝑦) − 𝑎(𝑥𝑖𝑛)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥𝑖𝑛). 

This implies that  

〈𝐴(𝑥𝑖𝑛), 𝑎(𝑦) − 𝑎(𝑥𝑖𝑛)〉 ∈ 𝑌\(−𝑖𝑛𝑡𝐶(𝑥𝑖𝑛)), 

i.e.  

〈𝐴(𝑥𝑖𝑛), 𝑎(𝑦) − 𝑎(𝑥𝑖𝑛)〉 ∈ 𝑊(𝑥𝑖𝑛). 

Since 𝐴  is completely continuous, we may obtain that there exists 𝑥0 ∈ 𝐾  such that 

𝐴(𝑥𝑖𝑛) → 𝐴(𝑥0) as 𝑖𝑛 → ∞. Now, by the continuity of inner product and semicontinuity of 

𝑎, we have  

〈𝐴(𝑥𝑖𝑛), 𝑎(𝑦) − 𝑎(𝑥𝑖𝑛)〉 → 〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉. 

Since 𝑊 is upper semicontinuous and 𝑌 be regular, we have  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∈ 𝑊(𝑥0). 
This implies that  

〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 ∉ −𝑖𝑛𝑡𝐶(𝑥0), 
and this completes the proof. 

 

Example 3.1. Let 𝑋 = 𝑌 = ℝ, 𝐾𝑛 = [2, 𝑛 + 2], 𝑛 = 1,2,3, . .. and 𝐾 = ⋃∞
𝑛=1 𝐾𝑛 , where 

{𝐾𝑛}𝑛=1
∞  is an increasing sequence of nonempty, compact and convex subsets of K. Let for 

all 𝑥 ∈ 𝐾, 𝐶(𝑥) = [0,+∞[ be a closed, convex and pointed cone. Let for all 𝑥 ∈ 𝐾, 𝐴:𝐾 →
𝑋∗ be defined by 𝐴(𝑥) = 𝑥 and 𝑎:𝐾 → 𝑋 be such that 𝑎(𝑥) = 2𝑥. Now, by using  

 

Theorem 3.3. for all 𝑛 ∈ ℕ, there exists 𝑥𝑛 = 2 ∈ 𝐾𝑛 such that for all 𝑧 ∈ 𝐾𝑛,  

 〈𝐴(𝑥𝑛), 𝑎(𝑧) − 𝑎(𝑥𝑛)〉 = 𝑥𝑛(2𝑧 − 2𝑥𝑛) = 2(2𝑧 − 4) ≥ 0. 
By condition (3.8) of Theorem 3.5, it can be easily seen that {𝑥𝑛}𝑛=1

∞  is not an escaping 

sequence from 𝐾 relative to {𝐾𝑛}𝑛=1
∞  and hence 𝑥0 = 2 ∈ 𝐾 is such that for all 𝑦 ∈ 𝐾,  

 〈𝐴(𝑥0), 𝑎(𝑦) − 𝑎(𝑥0)〉 = 𝑥0(2𝑦 − 2𝑥0) = 2(2𝑦 − 4) ≥ 0. 
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Abstract: In order to construct Riemannian manifolds with negative sectional curvature, the notion of 

warped products was first defined by Bishop & O’Neill in [22]. In general, doubly warped products 

can be considered as generalization of warped products. In this paper, we give complete classification 
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1. Introduction 

The warped products were first defined by Bishop and O’Neill [22]. They used this concept 

to construct Riemannian manifolds with negative sectional curvature. In general, doubly 

warped products can be considered as a generalization of warped products. Beem and Powell 

considered these products for Lorentzian manifolds in [15]. Then Allison [11] considered 

causality and global hyperbolicity of doubly warped products and null pseudocovexity of 

Lorentzian doubly warped products in [12]. Conformal properties of doubly warped products 

are studied by Gebarowski [1]. B.Y. Chen [8, 9] was the first who initiated the study of 

warped product submanifolds by showing that there do not exist warped product CR-

submanifolds of the type ℳ⊥ ×𝑓 ℳ𝑇 and he considered warped product CR-submanifolds 

of the types ℳ𝑇 ×𝑓 ℳ⊥ and established a relationship between the warping function 𝑓 and 

the squared norm of the second fundamental form. Later on, the geometrical aspect of warped 

products and doubly warped products had been studied by many researchers (for example 

[20, 23, 24, 25]). 

 

The notion of bi-slant submanifolds was defined by A. Carriazo et al. [16] as a generalization 

of contact CR, slant and semi-slant submanifolds. Such submanifolds generalize invariant, 

anti-invariant and pseudo-slant submanifolds as well. Many articles on warped product 

submanifolds of trans-Sasakian manifolds are available in literature [19, 20, 26]. By 
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generalizing the notion of warped product bi-slant submanifolds in trans-Sasakian manifolds, 

in the present paper, we wish to check the existence of other product bi-slant submanifolds 

such as doubly warped products in trans-Sasakian manifolds. 

 

Our work is structured as follows: Section 2 is preliminary in nature. In this section, we 

present basic material about trans-Sasakian manifolds, warped products and bi-slant 

submanifolds. In Section 3, we give complete classification of a warped product bi-slant 

submanifold in a trans-Sasakian manifold (Theorems 1 and 2) with an example (Example 2). 

In Section 4, we check whether the doubly warped product bi-slant submanifolds in trans-

Sasakian manifolds exist or not (Theorems 3 and 4). Sections 5 and 6 deal with the 

applications of the results (Theorems 3 and 4) obtained in Section 4. 

 

2. Preliminaries 

An odd dimensional differentiable manifold ℳ has an almost contact structure (𝜙, 𝜉, 𝜂, 𝑔) 

if there exists on ℳ a tensor field 𝜙 of type (1, 1), a vector field 𝜉, a 1-form 𝜂 and a 

Riemannian metric 𝑔 such that [17] 

 

 𝜙2 = −𝐼 + 𝜂 ⊗ 𝜉,    𝜙𝜉 = 0,    𝜂(𝜉) = 1,    𝜂(𝜙) = 0,    𝜂(𝑋) = 𝑔(𝑋, 𝜉), (1) 

 𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),    𝑔(𝜙𝑋, 𝑌) + 𝑔(𝑋, 𝜙𝑌) = 0. (2) 

 

Here and in the sequel 𝑋, 𝑌, 𝑍, …  always denote arbitrary vector fields on ℳ . The 

fundamental 2-form 𝜑 on ℳ is defined by 

𝜑(𝑋, 𝑌) = 𝑔(𝜙𝑋, 𝑌). 

An almost contact metric structure (𝜙, 𝜉, 𝜂, 𝑔) on ℳ is called a trnas-Sasakian structure 

[14] if (ℳ ×ℝ, 𝐽, 𝐺) belongs to the class 𝑊4 of the Gray-Hervella classification of almost 

Hermitian manifolds [3], where 𝐽 is the almost complex structure on ℳ×ℝ defined by 

𝐽(𝑋, 𝑎𝑑/𝑑𝑡) = (𝜙𝑋 − 𝑎𝜉, 𝜂(𝑋)𝑑/𝑑𝑡) 

for all vector fields X on ℳ and smooth functions 𝑎 on ℳ×ℝ and 𝐺 is the product 

metric on ℳ×ℝ. This may be expressed by the following condition: 

 

 (∇𝑋𝜙)𝑌 = 𝛼(𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋) + 𝛽(𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋) (3) 

  

for some smooth functions 𝛼 and 𝛽 on ℳ and this trans-Sasakian structure is termed as 

structure of type (𝛼, 𝛽). 
 

A trans-Sasakian of type 

    1.  (𝛼, 0) is 𝛼 −Sasakian if 𝛽 = 0;  

    2.  (0, 𝛽) is 𝛽 −Kenmotsu 𝛼 = 0;  

  A trans-Sasakian structure of type (𝛼, 𝛽) is 
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    1.  Sasakian if 𝛽 = 0, 𝛼 = 1;  

    2.  Kenmotsu 𝛼 = 0, 𝛽 = 1;  

    3.  cosymplectic if 𝛼 = 𝛽 = 0.  

  

Let ℳ be any submanifold in a Riemannian manifold ℳ. We put dim ℳ = 𝑛 and dim 

ℳ = 2𝑚 + 1. The Riemannian metric for ℳ and ℳ is denoted by the same symbol 𝑔. 

Let 𝑇ℳ and 𝑇⊥ℳ denote the Lie algebra of vector field and set of all normal vector fields 

on ℳ respectively. The operator of covariant differentiation with respect to the Levi-Civita 

connection in ℳ and ℳ is denoted by ∇ and ∇, respectively. The Gauss and Weingarten 

formulas are, respectively, given as [17] 

 ∇𝑋𝑌 = ∇𝑋𝑌 + ℎ(𝑋, 𝑌) (4) 

and  

 ∇𝑋𝑉 = −𝐴𝑉(𝑋) + ∇𝑋
⊥𝑉 (5) 

 

for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ and 𝑉 ∈ 𝑇⊥ℳ. Here ℎ is the second fundamental form, 

𝐴 is the shape operator and ∇⊥ is the operator of covariant differentiation with respect to 

the linear connection induced in the normal bundle 𝑇⊥ℳ. 

 

The second fundamental form and the shape operator are related as [17] 

𝑔(ℎ(𝑋, 𝑌), 𝑉) = 𝑔(𝐴𝑉(𝑋), 𝑌). 
 

for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ and 𝑉 ∈ 𝑇⊥ℳ. Here 𝑔 denote the induced metric on ℳ 

as well as the Riemannian metric on ℳ. Moreover, the covariant derivative of the tensor 

filed 𝜙 is defined as 

 (∇𝑋𝜙)𝑌 = ∇𝑋𝜙𝑌 − 𝜙∇𝑋𝑌. (6) 

 

Let ℘ ∈ℳ and {ℰ1, … , ℰ𝑛} be a local orthonormal frame of 𝑇℘ℳ and {ℰ𝑛+1, … , ℰ2𝑚+1} 

be a local orthonormal frame of 𝑇℘
⊥ℳ. The mean curvature vector ℋ of a submanifold ℳ 

at ℘ is given by [17] 

ℋ =
1

𝑛
∑

𝑛

𝑖=1

ℎ(ℰ𝑖, ℰ𝑖). 

Also, we set  

ℎ𝑖𝑗
𝑟 = 𝑔(ℎ(ℰ𝑖 , ℰ𝑗), ℰ𝑟),    𝑖, 𝑗 ∈ {1,… , 𝑛},    𝑟 ∈ {𝑛 + 1,… ,2𝑚 + 1} 

 and  

||ℎ||2 = ∑

𝑛

𝑖,𝑗=1

𝑔(ℎ(ℰ𝑖 , ℰ𝑗), ℎ(ℰ𝑖, ℰ𝑗)). 

A submanifold ℳ of ℳ is said to be [17] 



Warped Product and Doubly Warped Product …                                                            18 
 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES                                       VOL.9, 2018 
COPYRIGHT© DEPARTMENT OF MATHEMATICS, JAMIA MILLIA ISLAMIA, NEW DELHI, INDIA 

    • totally umbilical if ℎ(𝑋, 𝑌) = 𝑔(𝑋, 𝑌)ℋ  for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ;  

    • totally geodesic if ℎ(𝑋, 𝑌) = 0  for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ;  

    • minimal if ℋ = 0, i.e., trace ℎ ≡ 0.  

 

For any vector field 𝑋 ∈ 𝑇ℳ, we put [17] 

 𝜙𝑋 = 𝒫𝑋 + ℱ𝑋, (7) 

where 𝒫𝑋 = 𝑡𝑎𝑛(𝜙𝑋) and ℱ𝑋 = 𝑛𝑜𝑟(𝜙𝑋). Then 𝒫 is an endomorphism of 𝑇ℳ, and ℱ 

is the normal bundle valued 1 −form on 𝑇ℳ. 

 

In the same way, for any vector field 𝑉 ∈ 𝑇⊥ℳ, we put [17] 

 𝜙𝑉 = ℬ𝑉 + 𝒞𝑉, (8) 

where ℬ𝑉 = 𝑡𝑎𝑛(𝜙𝑉) and 𝒞𝑉 = 𝑛𝑜𝑟(𝜙𝑉). 
 

It is easy to see the following formulas: 

 𝑔(𝒫𝑋, 𝑌) = −𝑔(𝑋,𝒫𝑌) (9) 

 𝑔(𝒞𝑈, 𝑉) = −𝑔(𝑈, 𝒞𝒱) (10) 

 𝑔(ℱ𝑋, 𝑉) = −𝑔(𝑋, ℬ𝑉) (11) 

 

for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ and 𝑈, 𝑉 ∈ 𝑇⊥ℳ. For other geometric relations, see [17]. 

Following are the different classes of submanifolds in trans-Sasakian manifolds: 

 

Definition 1. A submanifold ℳ of an almost contact metric manifold ℳ is said to be 

invariant if ℱ ≡ 0, that is, 𝜙𝑋 ∈ 𝑇ℳ, and anti-invariant if 𝒫 ≡ 0, that is, 𝜙𝑋 ∈ 𝑇⊥ℳ, for 

any vector field 𝑋 ∈ 𝑇ℳ.  

 

In contact geometry, A. Lotta introduced slant immersions as follows [4]: 

 

Definition 2. Let ℳ be a submanifold of an almost contact metric manifold ℳ. For each 

non-zero vector 𝑋 tangent to ℳ at 𝑝, the angle 𝜃(𝑝) ∈ [0,
𝜋

2
], between 𝜙𝑋 and 𝒫𝑋 is 

called the slant angle of ℳ. If the slant angle is constant for each 𝑋 ∈ 𝑇ℳ and 𝑝 ∈ ℳ, 

then the submanifold is called the slant submanifold.  

 

For slant submanifolds, the following facts are known [21]: 

 𝒫2(𝑋) = 𝑐𝑜𝑠2𝜃(−𝑋 + 𝜂(𝑋)𝜉), (12) 

 𝑔(𝒫𝑋,𝒫𝑌) = 𝑐𝑜𝑠2𝜃(𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)) (13) 

and 

 𝑔(ℱ𝑋,ℱ𝑌) = 𝑠𝑖𝑛2𝜃(𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)) (14) 
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for any vector fields 𝑋, 𝑌 ∈ 𝑇ℳ, where 𝜃 is the slant angle of ℳ. 

 

There are some other important classes of submanifolds which are determined by the 

behavior of tangent bundle of the submanifold under the action of an almost contact metric 

structure 𝜙 of ℳ [25]: 

    1.  A submanifold ℳ of ℳ is called a contact CR-submanifold of ℳ if there exists 

a differentiable distribution 𝐷 on ℳ whose orthogonal complementary distribution 𝐷⊥ is 

anti-invariant.  

    2.  A submanifold ℳ of ℳ is called semi-slant submanifold of ℳ if there exists a 

pair of orthogonal distributions 𝐷 and 𝐷𝜃 such that 𝐷 is invariant and 𝐷𝜃 is proper slant.  

    3.  A submanifold ℳ of ℳ is called pseudo-slant submanifold of ℳ if there exists a 

pair of orthogonal distributions 𝐷⊥ and 𝐷𝜃 such that 𝐷⊥ is anti-invariant and 𝐷𝜃 is 

proper slant.  

 

Definition 3. [16] A submanifold ℳ of an almost contact metric manifold ℳ is said to be 

a bi-slant submanifold if there exists a pair of orthogonal distributions 𝐷𝜃1 and 𝐷𝜃2 of ℳ 

such that 

    1.  𝑇ℳ admits the orthogonal direct decomposition: 𝑇ℳ = 𝐷𝜃1 ⊕𝐷𝜃2 ⊕ {𝜉};  

    2.  Each distribution 𝐷𝜃𝑖 is slant with the slant angle 𝜃𝑖 for 𝑖 = 1,2.  

  

A bi-slant submanifold of an almost contact metric manifold ℳ is called proper if the slant 

distributions 𝐷𝜃1 and 𝐷𝜃2 are of the slant angles 𝜃1, 𝜃2 ≠ 0,
𝜋

2
. 

 If we assume 

    1.  𝜃1 = 0 and 𝜃2 =
𝜋

2
, then ℳ is a CR-submanifold;  

    2.  𝜃1 = 0 and 𝜃2 ≠ 0,
𝜋

2
, then ℳ is a semi-slant submanifold;  

    3.  𝜃1 =
𝜋

2
 and 𝜃2 ≠ 0,

𝜋

2
, then ℳ is a pseudo-slant submanifold.  

  

For a bi-slant submanifold ℳ of an almost contact metric manifold, the normal bundle of 

ℳ is decomposed as 

 𝑇⊥ℳ = ℱ𝐷𝜃1 ⊕ℱ𝐷𝜃2 ⊕𝜇, (15) 

where 𝜇 is a 𝜙-invariant normal subbundle of ℳ. 

 

3. Warped Product Bi-slant Submanifolds 

Definition 4. [22] Let (ℳ1, 𝑔1) and (ℳ2, 𝑔2) be two Riemannian manifolds and 𝑓 > 0 be 

a differentiable function on ℳ1. Consider the product 𝜌:ℳ1 ×ℳ2 ⟶ℳ1 and 𝛿:ℳ1 ×
ℳ2 ⟶ℳ2. The projection maps given by 𝜌(𝑝, 𝑞) = 𝑝 and 𝛿(𝑝, 𝑞) = 𝑞 for any (𝑝, 𝑞) ∈
ℳ1 ×ℳ2. Then the warped product ℳ =ℳ1 ×𝑓 ℳ2 is the product manifold ℳ1 ×ℳ2 

equipped with the Riemannian structure such that 
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 𝑔(𝑋, 𝑌) = 𝑔1(𝜌
∗𝑋, 𝜌∗𝑌) + (𝑓𝑜𝜌)2𝑔2(𝛿

∗𝑋, 𝛿∗𝑌) (16) 

 

for any 𝑋, 𝑌 ∈ 𝑇ℳ, where ∗ is the symbol for the tangent maps, and we have 𝑔 = 𝑔1 +
𝑓2𝑔2. The function 𝑓 is called the warping function of ℳ.  

 

In particular, a warped product manifold is said to be trivial if its warping function is constant. 

In such a case, we call the warped product manifold a Riemannian product manifold. If ℳ =
ℳ1 ×𝑓 ℳ2 is a warped product manifold then ℳ1 is totally geodesic and ℳ2 is totally 

umbilical submanifold of ℳ, respectively [22]. 

 

Let ℳ =ℳ1 ×𝑓 ℳ2 be a warped product manifold with the warping function 𝑓. Then  

∇𝑋𝑍 = ∇𝑍𝑋 = (𝑋𝑙𝑛𝑓)𝑍 

for each 𝑋 ∈ 𝑇ℳ1 and 𝑍 ∈ 𝑇ℳ2, where 𝑋𝑙𝑛𝑓 is the gradient of 𝑙𝑛𝑓 and ∇ denotes the 

Levi-Civita connection on ℳ. 

 

Example 1: The standard space-time models of the universe are warped products as the 

simplest models of neighbourhoods of stars and black holes.  

 

Now, we define the notion of warped product bi-slant submanifolds in a trans-Sasakian 

manifold as follows: 

 

Definition 5. A warped product ℳ1 ×𝑓 ℳ2 of two slant submanifolds ℳ1 and ℳ2 of a 

trans-Sasakian manifold ℳ is called a warped product bi-slant submanifold.  

 

A warped product bi-slant submanifold ℳ1 ×𝑓 ℳ2 is called proper if ℳ1 and ℳ2 are 

proper slant in ℳ. Otherwise, the warped product bi-slant submanifold ℳ1 ×𝑓 ℳ2 is 

called non-proper.  

 

At this moment, we need the following lemma, which shall be required to prove our main 

results of this section: 

 

Lemma 1. Let ℳ =ℳ1 ×𝑓 ℳ2 be a warped product bi-slant submanifold with bi-slant 

angle {𝜃1, 𝜃2} in a trans-Sasakian manifold ℳ. Then, for any 𝑋1 ∈ 𝑇ℳ1 and 𝑋2, 𝑌2 ∈
𝑇ℳ2,  

𝑔(ℎ(𝑋1, 𝑋2), ℱ𝑌2) = 𝑔(ℎ(𝑋1, 𝑌2), ℱ𝑋2) 
holds.  

Proof. For any 𝑋1 ∈ 𝑇ℳ1 and 𝑋2, 𝑌2 ∈ 𝑇ℳ2, we have  

 𝑔(ℎ(𝑋1, 𝑋2), ℱ𝑌2) = 𝑔(∇𝑋1𝑋2, 𝜙𝑌2) − 𝑔(∇𝑋1𝑋2, 𝒫𝑌2) 

 = −𝑔(𝜙∇𝑋1𝑋2, 𝑌2) − (𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝒫𝑌2) (17) 
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= 𝑔((∇𝑋1𝜙)𝑋2, 𝑌2) − 𝑔(∇𝑋1𝜙𝑋2, 𝑌2) − (𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝒫𝑌2) 

= 𝑔(𝐴ℱ𝑋2𝑋1, 𝑌2),  

 

where we have used 

(∇𝑋1𝜙)𝑋2 = 𝛼{𝑔(𝑋1, 𝑋2)𝜉 − 𝜂(𝑋2𝑋1)} + 𝛽{𝑔(𝜙𝑋1, 𝑋2)𝜉 − 𝜂(𝑋2)𝜙𝑋1} 

Hence, we get our assertion from (17).  

 

For a warped product bi-slant submanifold in a trans-Sasakian manifold such that 𝜉 ∈ 𝑇ℳ1, 

we have the following result: 

 

Theorem 4.1:  Let ℳ =ℳ1 ×𝑓 ℳ2  be a warped product bi-slant submanifold with bi-

slant angle {𝜃1, 𝜃2} in a trans-Sasakian manifold ℳ such that 𝜉 ∈ 𝑇ℳ1. Then one of 

the following these cases must occur: 

    1.  ℳ is a warped product pseudo-slant submanifold such that ℳ2 is a totally real 

submanifold ℳ⊥ of ℳ;  

    2.  If ℳ is 𝛼 −Sasakian manifold, i.e., 𝛽 = 0, then ℳ is a Riemannian product;  

    3.  If 𝛽 ≠ 0, then 𝛽𝜂(𝑋1) = (𝑋1𝑙𝑛𝑓).  

 

Proof. For any 𝑋1 ∈ 𝑇ℳ1 and 𝑋2, 𝑌2 ∈ 𝑇ℳ2, we have  

𝑔(ℎ(𝑋1, 𝑋2), ℱ𝑌2) = 𝑔(∇𝑋2𝑋1, 𝜙𝑌2) − 𝑔(∇𝑋2𝑋1, 𝒫𝑌2) 

                   = −(𝒫𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝑌2) + 𝑔(ℎ(𝑋2, 𝑌2), ℱ𝑋1) − 𝛼𝜂(𝑋1)𝑔(𝑋2, 𝑌2) 
                                       −𝛽𝜂(𝑋1)𝑔(𝒫𝑋2, 𝑌2) − (𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝒫𝑌2) (18) 

 

Interchanging the role of 𝑋2 by 𝑌2 in equation (18), we find that  

𝑔(ℎ(𝑋1, 𝑌2), ℱ𝑋2) = −𝑔(∇𝑌2𝒫𝑋1, 𝑋2) − 𝑔(∇𝑌2ℱ𝑋1, 𝑋2) − 𝛼𝜂(𝑋1)𝑔(𝑌2, 𝑋2) 

                                    −𝛽𝜂(𝑋1)𝑔(𝒫𝑌2, 𝑋2) − (𝑋1𝑙𝑛𝑓)𝑔(𝑌2, 𝒫𝑋2). (19) 

 

Subtracting (19) from (18), we get  

𝑔(𝒫𝑌2, 𝑋2)[−(𝑋1𝑙𝑛𝑓) + 𝛽𝜂(𝑋1)] = 0, 
where we have used Lemma 3. Now, for 𝑋2 = 𝒫𝑋2, we get  

𝑐𝑜𝑠2𝜃2 𝑔(𝑌2, 𝑋2)[−(𝑋1𝑙𝑛𝑓) + 𝛽𝜂(𝑋1)] = 0. 
 From the last expression, any one of the following can hold: 

(i)  if 𝑐𝑜𝑠2𝜃2 = 0, then 𝜃2 =
𝜋

2
 (i.e., ℳ is a warped product pseudo-slant 

submanifold of ℳ) or  

(ii) if 𝛽 = 0, then 𝑓 is constant (i.e., ℳ is a Riemannian product) or  

(iii) if 𝛽 ≠ 0, then 𝛽𝜂(𝑋1) = (𝑋1𝑙𝑛𝑓).  

 This completes the proof of our theorem.  
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For a warped product bi-slant submanifold in a trans-Sasakian manifold such that 𝜉 ∈
𝑇ℳ2, we have the following result: 

 

Theorem 4.2:  Let ℳ =ℳ1 ×𝑓 ℳ2  be a warped product bi-slant submanifold with bi-

slant angle {𝜃1, 𝜃2} in a trans-Sasakian manifold ℳ such that 𝜉 ∈ 𝑇ℳ2. Then one of 

the following these cases must occur:  

(i) ℳ is a warped product pseudo-slant submanifold such that ℳ2 is a totally real 

submanifold ℳ⊥ of ℳ;  

(ii) ℳ is a Riemannian product.  

  

Proof. For any 𝑋1 ∈ 𝑇ℳ1 and 𝑋2, 𝑌2 ∈ 𝑇ℳ2, we have  

  𝑔(ℎ(𝑋1, 𝑋2), ℱ𝑌2) = 𝑔(∇𝑋2𝑋1, 𝜙𝑌2) − 𝑔(∇𝑋2𝑋1, 𝒫𝑌2) 

                                    = −(𝒫𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝑌2) + 𝑔(ℎ(𝑋2, 𝑌2), ℱ𝑋1) 
                                         +(𝑋1𝑙𝑛𝑓)𝑔(𝒫𝑋2, 𝑌2) (20) 

 

Interchanging 𝑋2 by 𝑌2 in equation (20), it follows that 

 𝑔(ℎ(𝑋1, 𝑌2), ℱ𝑋2) = −(𝒫𝑋1𝑙𝑛𝑓)𝑔(𝑋2, 𝑌2) + 𝑔(ℎ(𝑋2, 𝑌2), ℱ𝑋1) 
                                       +(𝑋1𝑙𝑛𝑓)𝑔(𝒫𝑌2, 𝑋2). (21) 

Subtracting (21) from (20), we obtain 

𝑔(ℎ(𝑋1, 𝑋2), ℱ𝑌2) − 𝑔(ℎ(𝑋1, 𝑌2), ℱ𝑋2) = 2(𝑋1𝑙𝑛𝑓)𝑔(𝒫𝑌2, 𝑋2) 
 

Using Lemma 1 and we deduce that 

(𝑋1𝑙𝑛𝑓)𝑔(𝒫𝑌2, 𝑋2) = 0 

 For 𝑋2 = 𝒫𝑋2, we get 

𝑐𝑜𝑠2𝜃2(𝑋1𝑙𝑛𝑓)[𝑔(𝑌2, 𝑋2) − 𝜂(𝑋2)𝜂(𝑌2)] = 0. 
 Therefore, either 

(i) 𝜃2 =
𝜋

2
 or  

(ii) 𝑓 is constant.  

 Hence, our assertions follow.  

 

We give an example of warped product bi-slant submanifold of the form ℳ =ℳ𝜃 ×𝑓 ℳ⊥ 

whose bi-slant angles 𝜃1 ≠ 0,
𝜋

2
 and 𝜃2 =

𝜋

2
. Such warped product bi-slant submanifolds 

are called pseudo-slant submanifolds. In particular, we can obtain an example of warped 

product pseudo-slant submanifold, of type ℳ⊥ ×𝑓ℳ𝜃 with 𝜉 ∈ 𝑇ℳ⊥, in the setting of 

Kenmotsu manifold. The example is as follows: 

 

Example 2: Recalling example 3.1 in [13]. Consider the complex space ℂ4 with the usual 

Kaehler structure and real global coordinates (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4). Let ℳ =
ℝ×𝑓 ℂ

4 be the warped product between the real line ℝ and ℂ4, where warping function is 
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𝑒𝑡 and 𝑡 being the global coordinates in ℝ, then ℳ is a Kenmotsu manifold. Now 

defining the orthogonal basis 

 

 ℰ1 = 𝜕/𝜕𝑥1, 
 ℰ2 = 𝜕/𝜕𝑦3, 
 ℰ3 = 𝑐𝑜𝑠𝜃𝜕/𝜕𝑦4 − 𝑠𝑖𝑛𝜃𝜕/𝜕𝑥4, 
 ℰ4 = 𝑐𝑜𝑠𝜃𝜕/𝜕𝑥4 + 𝑠𝑖𝑛𝜃𝜕/𝜕𝑦4, 
 ℰ5 = 𝜕/𝜕𝑡. 
 

Obviously the distributions 𝒟𝜃 = {ℰ3, ℰ4} and 𝒟⊥ = {ℰ5, ℰ1, ℰ2} and denoted by ℳ𝜃 and 

ℳ⊥, then ℳ =ℳ𝜃 ×𝑓 ℳ⊥ is a pseudo-slant warped product submanifold isometrically 

immersed in ℳ, here the warping function is 𝑓 = 𝑒𝑡.  

 

4. Doubly warped product bi-slant submanifolds 

In general, doubly warped products can be considered as a generalization of warped products. 

Let (ℳ1, 𝑔1) and (ℳ2, 𝑔2) be Riemannian manifolds. A doubly warped product (ℳ, 𝑔) 
is a product manifold which is of the form ℳ =𝑓2 ℳ1 ×𝑓1 ℳ with the metric 𝑔 = 𝑓1

2𝑔1⊕

𝑓2
2𝑔2, where 𝑓1:ℳ1 ×ℳ2 ⟶ (0,∞) and 𝑓2:ℳ1 ×ℳ2 ⟶ (0,∞) are smooth maps. More 

precisely, if 𝜌:ℳ1 ×ℳ2 ⟶ℳ1  and 𝛿:ℳ1 ×ℳ2 ⟶ℳ2  are natural projections, the 

metric 𝑔 is defined by 

 𝑔(𝑋, 𝑌) = (𝑓2𝑜𝛿)
2𝑔1(𝜌

∗𝑋, 𝜌∗𝑌) + (𝑓1𝑜𝜌)
2𝑔2(𝛿

∗𝑋, 𝛿∗𝑌) (22) 

 

for any 𝑋, 𝑌 ∈ 𝑇ℳ, where ∗ is the symbol for the tangent maps. The function 𝑓1 and 𝑓2 

are called the warping functions of ℳ. 

 

Remarks 5. If we assume 

    1.  either 𝑓1 ≡ 1 or 𝑓2 ≡ 1, but not both, then we obtain a warped product.  

    2.  both 𝑓1 ≡ 1 and 𝑓2 ≡ 1, then we have a product manifold.  

    3.  neither 𝑓1 nor 𝑓2 is constant, then we have a non-trivial doubly warped product.  

  

Now, we define the notion of doubly warped product bi-slant submanifolds in a trans-

Sasakian manifold as follows: 

 

Definition 6. The doubly warped product of two slant submanifolds,  𝑓2ℳ1 ×𝑓1 ℳ2 is called 

the doubly warped product bi-slant submanifold of slant submanifolds ℳ1 and ℳ2 with 

slant angles 𝜃1 and 𝜃2, respectively, of a trans-Sasakian manifold with warping functions 

𝑓1 and 𝑓2 if only depend on the points of ℳ1 and ℳ2, respectively.  

 

For doubly warped product bi-slant submanifold ℳ of a trans-Sasakian manifold ℳ, we 

have 
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 ∇𝑌𝑋 = ∇𝑋𝑌 = (𝑌𝑙𝑛𝑓1)𝑋 + (𝑋𝑙𝑛𝑓2)𝑌 (23) 

 

for any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑌 ∈ 𝑇ℳ2. 

 

Theorem 4.3:   Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2  be a doubly warped product submanifolds in a 

trans-Sasakian manifold ℳ, where ℳ1 and ℳ2 are Riemannian submanifolds of ℳ 

and 𝜉 ∈ 𝑇ℳ1. Then ℳ is a warped product submanifold in the form ℳ1 ×𝑓1 ℳ2 if 

and only if 

 𝑔(ℎ(𝑋, 𝑌), ℱ𝑋) = 𝑔(ℎ(𝑋, 𝑋), ℱ𝑌) (24) 

    for any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑌 ∈ 𝑇ℳ2.  

Proof. From equation (2.12) of [19], we get 

(∇𝑋𝒫)𝑌 = 𝐴ℱ𝑌𝑋 + ℬℎ(𝑋, 𝑌) 
for any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑌 ∈ 𝑇ℳ2. 

 

Applying (23) and we derive 

(𝒫𝑌𝑙𝑛𝑓2)𝑋 − (𝑌𝑙𝑛𝑓2)𝒫𝑋 = ℬℎ(𝑋, 𝑌) + 𝐴ℱ𝑌𝑋. 
Taking inner product with 𝑋 ∈ 𝑇ℳ1, we obtain 

(𝒫𝑌𝑙𝑛𝑓2)||𝑋||
2 = 𝑔(ℎ(𝑋, 𝑋), ℱ𝑌) − 𝑔(ℎ(𝑋, 𝑌), ℱ𝑋). 

Thus, from last relation, we conclude that (𝒫𝑌𝑙𝑛𝑓2) = 0 if and only if 

𝑔(ℎ(𝑋, 𝑌), ℱ𝑋) = 𝑔(ℎ(𝑋, 𝑋), ℱ𝑌) 
for any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑌 ∈ 𝑇ℳ2. 

 

We conclude from (𝒫𝑌𝑙𝑛𝑓2) = 0 that 𝑓2 depends only on the points of ℳ1. Hence, ℳ is 

a warped product bi-slant submanifold in the form ℳ1 ×𝑓1 ℳ2. This completes the proof of 

the theorem.  

 

At this moment, we need the following lemma which shall be helpful in proving next result 

of this paper: 

 

Lemma 2. In a doubly warped product bi-slant submanifolds ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2 of a 

trans-Sasakian manifold ℳ, where ℳ1 and ℳ2 are proper slant submanifolds with 

respect to 𝜃1 and 𝜃2, respectively and 𝜉 ∈ 𝑇ℳ2, the following relation holds 

 

𝑔(ℎ(𝒫𝑋, 𝑍), ℱ𝑋) = 𝑔(ℎ(𝑋, 𝑍), ℱ𝒫𝑋) 
for any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑍 ∈ 𝑇ℳ2.  

 

Proof. For any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝜉, 𝑍 ∈ 𝑇ℳ2, we have 

 𝑔(ℎ(𝒫𝑋, 𝑍), ℱ𝑋) = 𝑔(∇𝑍𝒫𝑋, ℱ𝑋) 

                                  = 𝑔(𝒫𝑋, ∇𝑍𝒫𝑋) − 𝑔(𝒫𝑋, ∇𝑍𝜙𝑋) 
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= 𝑔(𝒫𝑋, ∇𝑍𝒫𝑋) − 𝑔(𝒫𝑋, (∇𝑍𝜙)𝑋) − 𝑔(𝒫𝑋,𝜙∇𝑍𝑋 

                    = 𝑐𝑜𝑠2𝜃1(𝑍𝑙𝑛𝑓2)||𝑋||
2 + 𝑔(ℱ𝒫𝑋, ℎ(𝑋, 𝑍) − 𝑐𝑜𝑠2𝜃1𝑔(𝑋, ∇𝑍𝑋) 

                    = 𝑔(ℎ(𝑋, 𝑍), ℱ𝒫𝑋). 
 Hence, our assertion follows.  

 

Theorem 4.4:   Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2 be a doubly warped product bi-slant submanifolds 

in a trans-Sasakian manifold ℳ, where ℳ1 and ℳ2 are proper slant submanifolds 

with respect to 𝜃1 and 𝜃2, respectively and 𝜉 ∈ 𝑇ℳ2. Then ℳ is a warped product bi-

slant submanifold in the form ℳ1 ×𝑓1 ℳ2.  

 

Proof. For any vector fields 𝑋 ∈ 𝑇ℳ1 and 𝑍, 𝜉 ∈ 𝑇ℳ2, we have 

𝑔(ℎ(𝒫𝑋, 𝑋), ℱ𝑍) = 𝑔(∇𝒫𝑋𝑋,𝜙𝑍) 

                               = 𝑔((∇𝒫𝑋𝜙)𝑋, 𝑍) − 𝑔(∇𝒫𝑋𝜙𝑋, 𝑍) 
                               = 𝑔(∇𝒫𝑋𝑍,𝒫𝑋) + 𝑔(ℎ(𝒫𝑋, 𝑍), ℱ𝑋) − 𝛽𝑐𝑜𝑠2𝜃1𝜂(𝑍)||𝑋||

2 

                               = 𝑐𝑜𝑠2𝜃1(𝑍𝑙𝑛𝑓2)||𝑋||
2 + 𝑔(ℎ(𝒫𝑋, 𝑍), ℱ𝑋) 

                                  −𝛽𝑐𝑜𝑠2𝜃1𝜂(𝑍)||𝑋||
2. (25) 

 

On the other hand, using 𝒫𝑋 in the place of 𝑋, we derive 

𝑔(ℎ(𝒫𝑋, 𝑋), ℱ𝑍) = −𝑐𝑜𝑠2𝜃1(𝑍𝑙𝑛𝑓2)||𝑋||
2 + 𝑔(ℎ(𝑋, 𝑍), ℱ𝑋) 

                                     −𝛽𝑐𝑜𝑠2𝜃1𝜂(𝑍)||𝑋||
2. (26) 

 

Subtracting (25) from (26), we get 

 2𝑐𝑜𝑠2𝜃1(𝑍𝑙𝑛𝑓2)||𝑋||
2 + 𝑔(ℎ(𝒫𝑋, 𝑍), ℱ𝑋) − 𝑔(ℱ𝒫𝑋, ℎ(𝑋, 𝑍)). (27) 

 

From (27) and Lemma 2, we find that 𝑍𝑙𝑛𝑓2 = 0 for all 𝑍 ∈ 𝑇ℳ2 . This shows that 𝑓2 

depends only on the points of ℳ1. Hence, ℳ is a warped product bi-slant submanifold in 

the form ℳ1 ×𝑓1 ℳ2. This proves the theorem completely.  

 

5. Some Applications of the Theorem 3 for Different Kinds of Ambient Manifolds 

Corollary 1. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2  be a doubly warped product submanifolds in a 

Sasakian manifold ℳ, where ℳ1 and ℳ2 are Riemannian submanifolds of ℳ and 𝜉 ∈
𝑇ℳ1. Then ℳ is a warped product submanifold in the form ℳ1 ×𝑓1 ℳ2 if and only if (24) 

holds.  

 

Corollary 2. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2  be a doubly warped product submanifolds in a 

Kenmotsu manifold ℳ, where ℳ1 and ℳ2 are Riemannian submanifolds of ℳ and 𝜉 ∈
𝑇ℳ1. Then ℳ is a warped product submanifold in the form ℳ1 ×𝑓1 ℳ2 if and only if (24) 

holds.  
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Corollary 3. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2  be a doubly warped product submanifolds in a 

cosymplectic manifold ℳ, where ℳ1 and ℳ2 are Riemannian submanifolds of ℳ and 

𝜉 ∈ 𝑇ℳ1. Then ℳ is a warped product submanifold in the form ℳ1 ×𝑓1 ℳ2 if and only if 

(24) holds.  

 

6. Some Applications of the Theorem 4 for Different Kinds of Ambient Manifolds 

Corollary 4. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2 be a doubly warped product bi-slant submanifolds in 

a Sasakian manifold ℳ, where ℳ1 and ℳ2 are proper slant submanifolds with respect to 

𝜃1 and 𝜃2, respectively and 𝜉 ∈ 𝑇ℳ2. Then ℳ is a warped product bi-slant submanifold 

in the form ℳ1 ×𝑓1 ℳ2.  

 

Corollary 5. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2 be a doubly warped product bi-slant submanifolds in 

a Kenmotsu manifold ℳ, where ℳ1 and ℳ2 are proper slant submanifolds with respect 

to 𝜃1 and 𝜃2, respectively and 𝜉 ∈ 𝑇ℳ2. Then ℳ is a warped product bi-slant 

submanifold in the form ℳ1 ×𝑓1 ℳ2.  

 

Corollary 6. Let ℳ =𝑓2 ℳ1 ×𝑓1 ℳ2 be a doubly warped product bi-slant submanifolds in 

a cosymplectic manifold ℳ, where ℳ1 and ℳ2 are proper slant submanifolds with 

respect to 𝜃1 and 𝜃2, respectively and 𝜉 ∈ 𝑇ℳ2. Then ℳ is a warped product bi-slant 

submanifold in the form ℳ1 ×𝑓1 ℳ2.  
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Abstract: It is well established that quantum criticality is one of the most intriguing 

phenomena which signals the presence of new states of matter. Without prior knowledge of 

the local order parameter, the quantum information metric (or fidelity susceptibility) can 

indicate the presence of a phase transition as well as it measures distance between quantum 

states. In this work, we calculate the distance between quantum states which is equal to the 

fidelity susceptibility in quantum model for a time-dependent system describing a two-level 

atom coupled to a time-driven external field. As inspired by the Landau-Zener quantum 

model, we find in the present work information metric induced by fidelity susceptibility. We, 

for the first time, derive a higher-order rank-3 tensor as a third-order fidelity susceptibility. 

Having computed quantum noise function in this simple time-dependent model we show that 

the noise function eternally lasts long in our model.  
 

Keywords: Fidelity Susceptibility; Quantum Information Theory; Information Metric 

89.70.+c; 03.65.Ta; 52.65.Vv   

 

1.  Introduction 

Quantum criticality is one of the most intriguing phenomena which is crucial for interpreting 

a wide variety of experiments. is well known, it signals the presence of new states of matter 

[1]. In order to observe exotic features at quantum critical point, one has to study systems in 

the thermodynamic regime involving large numbers of interacting particles, which encounter 

experimental and theoretical limitations [2]. Despite consisting only of a single-mode cavity 

field and a two-level atom, the authors of Ref.[3] show that the Rabi system exhibits a 

quantum phase transition (QPT). They demonstrate that the super radiant QPT primarily 

studied for systems of many atoms can be achieved with systems of a single one. 

In recent years, there was a great deal of interest in studying QPTs from different perspectives 

of quantum information science [4], e.g., quantum entanglement [5, 6] and quantum fidelity 

[7, 8, 9, 10]. At the phase transition point, physical observables exhibit singular behavior 

governing the most dramatic manifestations of the laws of statistical and quantum mechanics. 
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In order to probe the phase transition, the fidelity susceptibility draws one of the most 

promising machines in which no prior knowledge of the order parameter and the symmetry 

of the system are required [13]-[20]. Regarding these works, the connection between the 

quantum information theory and condensed matter physics can be in principle achieved 

which might allow us to deepen our understanding in the various condensed matter 

phenomena. Notice that the concept of the fidelity susceptibility was originally introduced in 

Ref. [7]. In a recent study [21], the fidelity both in the susceptibility limit and the 

thermodynamic limit has been nicely summarize. Furthermore in Ref. [22], quantum 

information metric has been investigated near critical points. 

 

An obvious physical example of QPTs using the quantum fidelity approach recently is given 

in [10],[22]. It was illustrated that at two sides of the critical point 𝑔𝑐 of a quantum many 

body system the ground state wavefunctions have different structures Ref. [11]. Then, 

consequently, this may lead to the overlap of the two ground states which are separated by a 

small distance 𝛿𝑔 in the parameter space and then might emerge. In general, at the critical 

point 𝑔𝑐  the distance can be parameterized via |Ψ0(𝑔)|Ψ0(𝑔 + 𝛿𝑔)| which is minimum. 

Therefore, the structure of the ground state of a quantum many-body system experiences a 

significant change because the system is driven across the transition point adiabatically. As 

a consequence, we expect that the fidelity susceptibility should be maximum (or even 

diverse) at the transition point, [7]. We notice that in various systems many authors have 

investigated the QPTs from the fidelity point of view [10, 7, 12]-[17]. They have shown that 

the fidelity susceptibility can be considered to be a simple approach in determining the 

universality of quantum phase transitions [12]-[17]. Interestingly, in [23], the quantum 

information metric gravity dual in conformal field theories has just been examined. 

 

In this work, we study the fidelity susceptibility in quantum model for a time-dependent 

system describing a two-level atom coupled to a time-driven external field. We analytically 

investigate the behavior of fidelity susceptibility in the time driven quantum model when the 

potential 𝑉 is time-dependent. The organization of the paper is as follows. In Sec.2, we 

explore the mathematical foundations for fidelity susceptibility in time-dependent systems. 

In Sec.3, the two-level Landau-Zener problem is analyzed. In Sec.4, an experimental method 

based on noise function is proposed. In Sec.5, the higher-order correction to fidelity 

susceptibility is calculated. Finally, we conclude our findings in the last section. 

 

2.  Mathematical formulation of fidelity susceptibility in time-dependent driving systems  

In this section we will formulate fidelity susceptibility for a general time-deriving system 

with two levels. Let us consider a physical system with non-perturbative time dependent 

Hamiltonian 𝐻0 in operator form:  

 
𝑖ℏ
𝜕

𝜕𝑡
𝜓𝑘
(0)

= 𝐻0𝜓𝑘
(0)
. (1) 
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Our aim is to find perturbed wavefunctions with Hamiltonian 𝐻 = 𝐻0 + 𝑉(𝑡)  when 

|𝑉(𝑡)| ≪ |𝐻0|. Note that here 𝑉 is considered to have off diagonal components, i.e, 𝑉𝑚≠𝑛 =

𝜓𝑚
(0)
|𝑉|𝜓𝑛

(0)
≠ 0. Suppose that the perturbative solution for 𝐻 can be technically written in 

the following form:  

 Ψ =∑

𝑘

𝑎𝑘𝜓𝑘
(0)
, 

(2) 

where 𝑎𝑘 = 𝑎𝑘(𝑡). Substituting (2) into Schrödinger equation and multiplying by 𝜓𝑚
(0)

, we 

obtain:  

 
𝑖ℏ
𝑑𝑎𝑚
𝑑𝑡

=∑

𝑘

𝑉𝑚𝑘(𝑡)𝑎𝑘 , 
(3) 

where  

 
𝑉𝑚𝑘(𝑡) = ∫ 𝜓𝑚

∗(0)
𝑉̂𝜓𝑘

(0)
𝑑𝑡 = 𝑉𝑚𝑘𝑒

𝑖
𝐸𝑚
(0)
−𝐸𝑘

(0)

ℏ
𝑡
. 

(4) 

 

Using iteration method up to the first order, i.e. 𝑎𝑘
(0)
+ 𝑎𝑘

(1)
 where 𝑎𝑘

(0)
= 𝑎𝑘(𝑡 = 0), we 

can find the ordinary differential equation for the first-order perturbation,  

 
𝑖ℏ
𝑑𝑎𝑘

(1)

𝑑𝑡
= 𝑉𝑘𝑛(𝑡). (5) 

 

Finally, up to the first order perturbation theory, the total wave function is written as  

 Ψ𝑛 =∑

𝑘

𝑎𝑘𝑛(𝑡)𝜓𝑘
(0)
. 

(6) 

   

Performing an integration, we obtain  

 
𝑎𝑘𝑛
(1)

= −
𝑖

ℏ
∫ 𝑉𝑘𝑛(𝑡)𝑑𝑡 = −

𝑖

ℏ
∫ 𝑉𝑘𝑛𝑒

𝑖𝑤𝑘𝑛𝑡𝑑𝑡. 
(7) 

 

In this case, to figure out how 𝜒𝐹 looks like, we need the ground state wavefunction to be,  

 𝜓𝑛 = 𝜓𝑛
(0)
+∑

𝑘

𝑎𝑘𝑛
(1)
𝜓𝑘
(0)
. 

(8) 

 

Let us further analyze our result for a two-level system. The perturbed wavefunction for the 

ground state 𝐸1 is given by,  

 𝜓1
(𝜆)

= (1 + 𝜆1𝑈11)𝜓1
(0)
+ 𝜆2𝑊12𝜓2

(0)
. (9) 
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Here we suppose that 𝑎11
(1)

= 𝜆1𝑈11, 𝑎12
(1)

= 𝜆2𝑊12. Let us calculate the inner product which 

is satisfied to yield the fidelity susceptibility, finally we suggest the following expression for 

the fidelity susceptibility 𝜒𝐹 for a time-driving system   

 
𝜒𝑖𝑗 = [

𝜓1(𝜆)|𝜕𝜆𝑖𝜓1(𝜆)

𝜓1|𝜓1
][
𝜓1(𝜆)|𝜕𝜆𝑗𝜓1(𝜆)

𝜓1|𝜓1
] + 2

𝜓1(𝜆)|𝜕𝜆𝑖𝜕𝜆𝑗𝜓1(𝜆)

𝜓1|𝜓1
𝛿𝑖𝑗 . (10) 

 

Note that 𝑑𝑠̂2 = 𝜒𝑖𝑗𝛿𝜆𝑖𝛿𝜆𝑗 defines a Riemannian metric on a manifold 𝑀 which is a family 

of (positive definite) inner products – for all differentiable vector fields 𝜆1, 𝜆2 on 𝑀, that 

defines a smooth function 𝑀 → 𝑅2 on coordinate space (𝜆𝑖)
2 . An explicit form for the 

metric can be written as follows:  

 𝑑𝑠2 = 𝜒11𝑑𝜆1
2 + 2R𝑒(𝜒12)𝑑𝜆1𝑑𝜆2 + 𝜒22𝑑𝜆2

2, (11) 

 

or its equivalent form,  

 𝑑𝑠2 = 𝜒𝑖𝑗(𝑡)𝑑𝜆𝑖𝑑𝜆𝑗 . (12) 

 

3. Fidelity susceptibility in the Landau-Zener problem 

In the previous section we introduced a general formulation for fidelity susceptibility for time 

deriving potential. In this section, we will investigate a concrete example, inspired from 

Landau-Lifshitz cookbooks [29]. The system under consideration is a two-level quantum 

system initially prepared in ground state. The model named as Landau-Zener problem. The 

aim is to calculate 𝜒𝐹  matrix using (10). The ground state is defined by 𝑛 = 0  and it 

satisfies:  

 𝐻00     ≤     𝐻0Excited state. (13) 

 

The energy levels for the unperturbed Hamiltonian 𝐻0 is defined as 𝐸𝑎 = 𝐸1, 𝐸2 and it is 

convenient to define a frequency basis for the system,  

 
𝜔12 =

𝐸2 − 𝐸1
ℏ

> 0. 
(14) 

  

As a two-level system, 𝐸1 = 𝐸0 = 𝐸𝑚𝑖𝑛, consequently we have:  

 𝐸2 > 𝐸1. (15) 

 

The following two total wavefunctions of a two-level system 𝐸2 > 𝐸1 are defined using the 

orthogonality realization:  

 Ψ1 =∑

𝑘

𝑎𝑘1(𝑡)𝜓𝑘
(0)
,    Ψ2 =∑

𝑘

𝑎𝑘2(𝑡)𝜓𝑘
(0)
, 

(16) 
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 where  

 
𝑎𝑘𝑛 = 𝛿𝑘𝑛 −

𝑖

ℏ
∫ 𝑉𝑘𝑛𝑒

𝑖𝜔𝑘𝑛𝑡𝑑𝑡. 
(17) 

 

Next, we propose a specific form of the potential as  

 𝑉 = 𝐹𝑒−𝑖𝜔𝑡 + 𝐺𝑒𝑖𝜔𝑡 , (18) 

 

where 𝐹 and 𝐺 are time-independent operators. If 𝑉𝑛𝑚 = 𝑉𝑚𝑛
∗  then we obtain 𝐺𝑛𝑚 = 𝐹𝑚𝑛

∗ . 

In this situation, the matrix element takes the form,  

 𝑉𝑘𝑛(𝑡) = 𝑉𝑘𝑛𝑒
𝑖𝜔𝑘𝑛𝑡 = 𝐹𝑘𝑛𝑒

𝑖(𝑤𝑘𝑛−𝜔)𝑡 + 𝐹𝑘𝑛
∗ 𝑒𝑖(𝑤𝑘𝑛+𝜔)𝑡. (19) 

 

Substituting (19) into (17) and performing an integration, we obtain  

 
𝑎𝑘𝑛
(1)

= −
𝐹𝑘𝑛𝑒

𝑖(𝜔𝑘𝑛−𝑤)𝑡

ℏ(𝜔𝑘𝑛 −𝜔)
−
𝐹𝑘𝑛
∗ 𝑒𝑖(𝜔𝑘𝑛+𝑤)𝑡

ℏ(𝜔𝑘𝑛 +𝜔)
, 

(20) 

 

where we have assumed that 𝜔𝑘𝑛 ≠ ±𝜔. Note that the matrix element for an arbitrary 

operator 𝑂 is given by:  

 𝑂𝑚𝑛(𝑡) = 𝑂𝑚𝑛
(0)
𝑒𝑖𝜔𝑛𝑚𝑡 + 𝑂𝑚𝑛

(1)
(𝑡), (21) 

  

where   

𝑂𝑚𝑛
(1)
(𝑡) = 𝑒𝑖𝜔𝑛𝑚𝑡(∑

𝑘

[
𝑂𝑛𝑘
(0)
𝐹𝑘𝑚

ℏ(𝜔𝑘𝑚 −𝜔)
+

𝑂𝑘𝑚
(0)
𝐹𝑛𝑘

ℏ(𝜔𝑘𝑛 + 𝜔)
]𝑒−𝑖𝜔𝑡 + [

𝑂𝑛𝑘
(0)
𝐹𝑚𝑘
∗

ℏ(𝜔𝑚𝑘 +𝜔)

+
𝑂𝑘𝑚
(0)
𝐹𝑘𝑛
∗

ℏ(𝜔𝑛𝑘 −𝜔)
]𝑒𝑖𝜔𝑡). 

(22) 

 

To be more concrete when choosing 𝑂 = 𝐻 and 𝐻𝑛𝑘
(0)

= 𝐸𝑘𝛿𝑛𝑘, the matrix form for 𝐻 in 

zeroth order reads,   

𝐻𝑛𝑚 = 𝐸𝑚𝛿𝑛𝑚𝑒
𝑖𝜔𝑛𝑚𝑡 − 𝑒𝑖𝜔𝑛𝑚𝑡(∑

𝑘

[
𝐸𝑘𝛿𝑛𝑘𝐹𝑘𝑚
ℏ(𝜔𝑘𝑚 − 𝜔)

+
𝐸𝑘𝛿𝑚𝑘𝐹𝑛𝑘
ℏ(𝜔𝑘𝑛 +𝜔)

] 𝑒−𝑖𝜔𝑡

+ [
𝐸𝑘𝛿𝑛𝑘𝐹𝑚𝑘

∗

ℏ(𝜔𝑚𝑘 +𝜔)
+

𝐸𝑘𝛿𝑚𝑘𝐹𝑘𝑛
∗

ℏ(𝜔𝑛𝑘 −𝜔)
]𝑒𝑖𝜔𝑡). 

(23) 

 

If 𝐹 is real, i.e., 𝐹𝑚𝑛 = 𝐹𝑛𝑚
∗ , we obtain the following expression for a matrix representation 

of 𝐻 up to the first-order perturbation,   
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𝐻𝑛𝑚 = 𝐸𝑛𝛿𝑛𝑚𝑒

𝑖𝜔𝑛𝑚𝑡 − 𝑒𝑖𝜔𝑛𝑚𝑡𝐹𝑛𝑚𝜔𝑛𝑚 (
𝑒−𝑖𝜔𝑡

𝜔𝑛𝑚 −𝜔
+

𝑒𝑖𝜔𝑡

𝜔𝑛𝑚 +𝜔
). 

(24) 

 

Note that the diagonal elements are commonly parametrized by 𝐻𝑛𝑛 = 𝐸𝑛  and the off-

diagonal ones are  

 
𝐻𝑛≠𝑚 = −𝑒𝑖𝜔𝑛𝑚𝑡𝐹𝑛𝑚𝜔𝑛𝑚 (

𝑒−𝑖𝜔𝑡

𝜔𝑛𝑚 − 𝜔
+

𝑒𝑖𝜔𝑡

𝜔𝑛𝑚 +𝜔
). 

(25) 

  

For the two-level system, it is still plausible to obtain  

 
𝐻12 = (𝐻21)

∗ = 𝜔0𝐹12 (
𝑒𝑖(𝜔−𝜔0)𝑡

𝜔 − 𝜔0
−
𝑒−𝑖(𝜔+𝜔0)𝑡

𝜔 + 𝜔0
). 

 

 

The wavefunction coefficients read as follows:  

 
𝑎11
(1)

= 𝑖
𝐹11
ℏ𝜔

sin(𝜔𝑡), 
(26) 

and  

 
𝑎21
(1)

= −
𝐹12
∗

ℏ
[
𝑒−𝑖𝜔𝑡

𝜔0 −𝜔
+

𝑒𝑖𝜔𝑡

𝜔0 +𝜔
]. 

(27) 

 

Therefore, the total perturbed wavefunction for the ground state is given by,  

 
Ψ1 = (

𝐹11
ℏ𝜔

sin(𝜔𝑡))𝜓1
(0)
−
𝐹12
∗

ℏ
(
𝑒−𝑖𝜔𝑡

𝜔0 − 𝜔
+

𝑒𝑖𝜔𝑡

𝜔0 +𝜔
)𝜓2

(0)
. 

(28) 

 

It is reasonable to parametrize perturbed matrix elements as follows:  

 𝐹11 = 𝜆1𝑉11, (29) 

 𝐹12 = 𝜆2𝑊12. (30) 

 

In terms of these parameters, we obtain   

 
Ψ1 = (

𝑖𝑉11
ℏ𝜔

sin𝜔𝑡) 𝜆1𝜓1
(0)
−
𝑖𝑊12

∗

ℏ
𝑒𝑖𝜔0𝑡 (

𝑒−𝑖𝜔𝑡

𝜔0 −𝜔
+

𝑒𝑖𝜔𝑡

𝜔0 +𝜔
)𝜆2𝜓2

(0)
. 

(31) 

 

By defining two auxiliary functions,  

 
𝛼(𝑡) =

𝑖𝑉11
ℏ𝜔

sin𝜔𝑡, 
(32) 
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𝛽(𝑡) =

−𝑖𝑊12
∗

ℏ
(
𝑒𝑖(𝜔0−𝜔)𝑡

𝜔0 −𝜔
+
𝑒𝑖(𝜔0+𝜔)𝑡

𝜔0 +𝜔
), 

(33) 

 

and using (10), we end up with the matrix elements for 𝜒𝐹 as follows:  

 
𝜒11 =

1

2𝜆1

1

1 + |
𝛽
𝛼 |

2 (
𝜆2
𝜆1
)
2, 

(34) 

 

𝜒12 =
1

2𝜆1

1 + |
𝛽
𝛼 |

2 (
𝜆2
𝜆1
)

1 + |
𝛽
𝛼 |

2 (
𝜆2
𝜆1
)
2, 

(35) 

 

𝜒22 =
1

2𝜆1

|
𝛽
𝛼 |

2

1 + |
𝛽
𝛼 |

2(
𝜆2
𝜆1
)2
. 

(36) 

 

Note that here 𝜆2 ≠ 𝜆1 to have the non-singular metric 𝜒𝑖𝑗. In our model,  

 
|
𝛽

𝛼
|2 = |

2𝜔𝑊12
∗

𝑉11
|2(
𝜔2cos2(𝜔0𝑡) + 𝜔0

2sin2(𝜔0𝑡)cot
2(𝜔𝑡)

(𝜔2 − 𝜔0
2)2

) 
 

 

We are interested in high frequencies where 𝜔 ≫ 𝜔0. In this case we have  

 
|
𝛽

𝛼
|2 ≈ |

4𝑊12
∗

𝑉11
|2cos2(𝜔0𝑡). (37) 

 

Finally, by defining 𝛾 ≡ |
4𝑊12

∗

𝑉11
|2 > 0, we have the following approximated form for fidelity 

susceptibility at high frequencies and ultraviolet (UV) regime as follows:  

 
𝜒11 =

1

2𝜆1

1

1 + 𝛾cos2(𝜔0𝑡)(
𝜆2
𝜆1
)2
, 

(38) 

 

𝜒12 =
1

2𝜆1

1 + 𝛾cos2(𝜔0𝑡)(
𝜆2
𝜆1
)

1 + 𝛾cos2(𝜔0𝑡)(
𝜆2
𝜆1
)2
, 

(39) 

 
𝜒22 =

1

2𝜆1

𝛾cos2(𝜔0𝑡)

1 + 𝛾cos2(𝜔0𝑡)(
𝜆2
𝜆1
)2
. 

(40) 
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The information metric, measures the distance between two quantum states close to each 

other in UV regime and is given as follows:   

𝑑𝑠2 =
1

2𝜆1(1 + 𝛾cos2(𝜔0𝑡)(
𝜆2
𝜆1
)2)

[𝑑𝜆1
2 + 2(1 + 𝛾cos2(𝜔0𝑡)(

𝜆2
𝜆1
))𝑑𝜆1𝑑𝜆2

+ 𝛾cos2(𝜔0𝑡)𝑑𝜆2
2]. (41) 

 

This metric could be dual to a non-relativistic time dependent bulk theory via Maldacena’s 

AdS/CFT correspondence [37] in a same methodology as presented in [38]. 

 

4. Measurement 𝝌𝑭 using quantum noise setups  

In recent years, the time-dependent systems phase transitions have been investigated in 

references [30]-[36]. In Ref. [30], the universal scaling behavior in a one-dimensional 

quantum Ising model subject to time-dependent sinusoidal modulation in time of its 

transverse magnetic field has been illustrated. This scaling behavior existed in various 

quantities, e.g. concurrence, entanglement entropy, magnetic and fidelity susceptibility. 

Based on an Ising spin chain and with periodically varying external magnetic field along the 

transverse direction the authors, in Ref. [31], investigated the microscopic quantum 

correlations dynamics of the bipartite entanglement and quantum discord. 

In this section, we mainly focus on frequency spectrum of the quantum system resulting from 

the quantum noise function. Let us assume a generalized Hamiltonian 𝐻 = 𝐻0 + 𝜆𝑉 with 𝜆 

denoting the control parameter. The quantum noise spectrum of the driven Hamiltonian 𝑉 

can be defined as  

 𝑆𝑄(𝜔) = ∑

𝑛≠0

|〈𝜙𝑛|𝑉|𝜙0〉|
2𝛿(𝜔 − 𝐸𝑛 + 𝐸0), 

(42) 

 

where 𝜙𝑛 is the eigenstate of the Hamiltonian 𝐻(𝜆) and we assumed 𝐸𝑛 as non-degenerate 

energy levels of the whole system. Note that the quantum noise function 𝑆𝑄(𝜔) can be 

constructed from the excited states 𝐸𝑛 > 𝐸0. In our model, the ground state wavefunction is 

given in Eq. (31). Here we can rewrite the noise function (42) using matrix element given in 

Eq. (19) as follows:  

 𝑆𝑄(𝜔) == 2|𝜆2𝑊12|
2cos2𝜔𝑡. (43) 

 

We plot the noise function 𝑆𝑄(𝜔) versus time (𝑡) and frequency (𝜔) illustrated in Fig.(1).  

  



Quantum Information metric for time-dependent …                                                          36 
 

JMI INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES                                       VOL.9, 2018 
COPYRIGHT© DEPARTMENT OF MATHEMATICS, JAMIA MILLIA ISLAMIA, NEW DELHI, INDIA 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The plot shows the noise function 𝑆𝑄(𝜔) as functions of time (𝑡) and frequency 

(𝜔). 

   

As well known, the fidelity susceptibility plays an important role in QPTs stemming from 

the fact that it is always possible to describe the universality classes of QPTs without 

specifying the type of the symmetry of the system. However, it is adequate to ask whether 

we can measure 𝜒𝐹 using experimental setups. It has been shown that recently the 𝜉𝐹 is 

related to the quantum noise spectrum of the time-driven Hamiltonian [27]. It is remarkable 

to relate 𝜉𝐹 to 𝑆𝑄(𝜔) using Kronig-Penney transformation:  

 
𝜒𝐹 = ∫

∞

−∞

𝑑𝜔
𝑆𝑄(𝜔)

𝜔2
. 

(44) 

 

Bearing in mind that the following definition of derivative of any analytic function 𝑓(𝑧) 
provides a useful tool:  

 𝑓(𝑧): 𝒞 → 𝒞,  

 
𝑓(𝑛)(𝑧) =

Γ(𝑛 + 1)

2𝜋𝑖
∫

𝑓(𝑤)

(𝑤 − 𝑧)𝑛+1
𝑑𝑤, 

(45) 

 

where Γ(𝑛 + 1) = ∫
∞

0
𝑒−𝑡𝑡𝑛𝑑𝑡 is a Gamma function. Using (45) we clearly observe that 

[27]:  

 
𝜒𝐹 = 𝜋𝑖

𝑑2𝑆𝑄(𝜔)

𝑑𝜔2
|𝜔=0. (46) 

 

It is clearly stated that 𝑆𝑄(𝜔) can be measured in laboratory, see Ref. [28]. Consequently, 

we verify that the 𝜒𝑓 could be measured in the laboratory, as well. Particularly the Landau-

Lifshitz model with 𝜒𝐹 presented in Eqs. (54)-(56) provides a useful machinery to study the 

universal scaling behavior of 𝜒𝐹. 
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5. 𝓞(𝜹𝝀)𝟑 Missing term  

In this section, we highlight higher order corrections up to the 𝒪(𝛿𝜆3)  of 𝜒𝐹 . It is 

noteworthy to figure out higher order terms, i.e., the coefficient of 𝛿𝜆2 using the expressions 

given above. Remember that  

 
𝜓(𝜆 + 𝛿𝜆) = 𝜓(𝜆) + 𝛿𝜆𝜕𝜆𝜓(𝜆) +

𝛿𝜆2

2
𝜕𝜆
2𝜓(𝜆). (47) 

 

Let us compute the following inner product:   

 𝜓(𝜆)|𝜓(𝜆 + 𝛿𝜆) ≈ 𝜓(𝜆)|𝜓(𝜆) + 𝛿𝜆𝜓(𝜆)|𝜕𝜆𝜓(𝜆) + 𝛿𝜆2𝜓(𝜆)|𝜕𝜆
2𝜓(𝜆)+. ..  , (48) 

 

where the ellipses denote higher order (correction) terms. Consequently, we obtain the 

following expression for the third-order fidelity susceptibility as follows: 

 
𝜁𝐹 =

𝜓(𝜆)|𝜕𝜆𝜓(𝜆)𝜓(𝜆)|𝜕𝜆
2𝜓(𝜆)

|𝜓|𝜓|2
. 

(49) 

  

The above equation defines a higher order correction to the usual fidelity susceptibility. The 

corresponding metric is a Finsler manifold in which the general information metric is 

characterized by the following form:  

 
𝑑𝑠2 = 𝜒𝑖𝑗𝑑𝜆𝑖𝑑𝜆𝑗 + (𝜁𝑖𝑗𝑘𝑑𝜆𝑖𝑑𝜆𝑗𝜆𝑘)

2
3+. ..  . (50) 

 

It is worth noting that the distant between two quantum states in any quantum theory can be 

quantified not only by fidelity but also with higher order cubic quantity defined by 𝜁𝐹. We 

note here that the corresponding tensor form for 𝜁𝐹 is given by:  

 
(𝜁𝐹)𝑖𝑗𝑘 =

𝜓(𝜆)|𝜕𝜆𝑖𝜓(𝜆)𝜓(𝜆)|𝜕𝜆𝑗𝜕𝜆𝑘𝜓(𝜆)

|𝜓|𝜓|2
. 

(51) 

 

It will be very interesting to find bulk dual for this new tensor in a similar way recently 

suggested for fidelity susceptibility as a maximal volume in the AdS spacetime [38]. 

 

6. Summary 

In this work, we have presented a simple and straightforward approach to compute distance 

between quantum states responsible for the fidelity susceptibility in quantum model for a 

time-dependent system describing a two-level atom coupled to a time-driven external field. 

Analytically we have investigated the behavior of fidelity susceptibility in the time-driven 

quantum model in which the potential 𝑉 is time-dependent. Interestingly, the information 

metric induced by fidelity susceptibility can be nicely achieved. We also plotted the obtained 

noise function and found that the noise function eternally lasts long in our model. We have 

also derived for the first time a higher-order rank-3 tensor as third-order fidelity susceptibility 
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for having a model beyond fidelity susceptibility. 

 

It will be very interesting to find bulk dual for this new tensor in a similar way recently 

suggested for fidelity susceptibility as a maximal volume in the AdS spacetime [38]. 

Moreover, as mentioned in Refs. [39, 40], our understanding of quantum gravity may be 

satisfied using quantum information theory along with holography. This may allow us to 

further examine a possible connection between the fidelity susceptibility and holographic 

complexity and may shed new light on the deeper understanding of quantum gravity. 
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1. Introduction 

Throughout the paper unless otherwise stated, let 𝐻  be a real Hilbert space with inner 

product 〈. , . 〉  and ∥. ∥  denotes the norm of 𝐻 . Let 𝐶  be a nonempty subset of 𝐻 . A 

mapping 𝑇: 𝐶 → 𝐻 is said to be a generalized hybrid mapping [1] if there exist 𝛼, 𝛽 ∈ ℝ 

such that  

 

𝛼‖𝑇𝑥 − 𝑇𝑦‖2 + (1 − 𝛼)‖𝑥 − 𝑇𝑦‖2 ≤ 𝛽 ∥ 𝑇𝑥 − 𝑦 ∥2+ (1 − 𝛽) ∥ 𝑥 − 𝑦 ∥2, ∀ 𝑥, 𝑦 ∈ 𝐶. 
 

A mapping 𝑇: 𝐶 → 𝐻 is said to be a nonexpansive if 𝛼 = 1 and 𝛽 = 0 that is 

  

∥ 𝑇𝑥 − 𝑇𝑦 ∥≤∥ 𝑥 − 𝑦 ∥, ∀ 𝑥, 𝑦 ∈ 𝐶. 
 

A mapping 𝑇: 𝐶 → 𝐻 is said to be a nonspreading [2] if 𝛼 = 2 and 𝛽 = 1 that is  

 

2 ∥ 𝑇𝑥 − 𝑇𝑦 ∥2≤∥ 𝑇𝑥 − 𝑦 ∥2 +∥ 𝑇𝑦 − 𝑥 ∥2, ∀𝑥, 𝑦 ∈ 𝐶. 
 

It is said to be a hybrid [3] if 𝛼 =
3

2
 and 𝛽 =

1

2
 that is  

 

3 ∥ 𝑇𝑥 − 𝑇𝑦 ∥2≤∥ 𝑥 − 𝑦 ∥2 +∥ 𝑇𝑥 − 𝑦 ∥2 +∥ 𝑇𝑦 − 𝑥 ∥2, ∀𝑥, 𝑦 ∈ 𝐶. 
 

Takahashi and Takeuchi [4] introduced the concept of attractive points of a nonlinear 

mapping in a Hilbert space and they proved a mean convergence theorem of Baillon’s type 
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[5] without convexity for generalized hybrid mappings. 

 

Recently, Takahashi et al. [6] studied the following Halpern’s type [7] iterative scheme and 

proved a strong convergence theorem for finding attractive points of generalized hybrid 

mappings in a Hilbert space 

 

𝑥𝑛+1 = 𝛼𝑛𝑧 + (1 − 𝛼𝑛)(𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)𝑇𝑥𝑛). 
 

Very recently, Zheng [8] studied the following Ishikawa iterative scheme and proved weak 

and strong convergence theorems for finding attractive points of generalized hybrid 

mappings in Banach space 

 

{
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑦𝑛
𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)𝑇𝑥𝑛.

 

 

Motivated by the work of Takahashi and Takeuchi [4], Takahashi et al. [6], Zheng [8], and 

by the ongoing research in this direction, we introduce an iterative method based on viscosity 

implicit midpoint method for finding an attractive point in a real Hilbert space. We obtain a 

weak convergence theorem for the sequence generated by the proposed iterative scheme. 

Finally, we derive some consequence from our main result. The result presented in this paper 

extended and unify many of the previously known results in this area, see instance [1, 2, 5, 

9]. 

 

2. Preliminaries 

We recall some concepts and results that are needed in the sequel. 

The symbols → and ⇀ denote strong and weak convergence, respectively, 𝐼 denotes the 

identity operator on 𝐻. 

 

For every point 𝑥 ∈ 𝐻, there exists a unique nearest point to 𝑥 in 𝐶 denoted by 𝑃𝐶𝑥 such 

that  

 ∥ 𝑥 − 𝑃𝐶𝑥 ∥≤∥ 𝑥 − 𝑦 ∥, ∀𝑦 ∈ 𝐶. (2.1) 

 

The mapping 𝑃𝐶 is called the metric projection of 𝐻 onto 𝐶. It is well known that 𝑃𝐶 is 

nonexpansive and satisfies  

 〈𝑥 − 𝑦, 𝑃𝐶𝑥 − 𝑃𝐶𝑦〉 ≥∥ 𝑃𝐶𝑥 − 𝑃𝐶𝑦 ∥
2, ∀𝑥, 𝑦 ∈ 𝐻. (2.2) 

                     

Moreover, 𝑃𝐶𝑥 is characterized by the fact that 𝑃𝐶𝑥 ∈ 𝐶 and  

 

 〈𝑥 − 𝑃𝐶𝑥, 𝑦 − 𝑃𝐶𝑥〉 ≥ 0, ∀𝑦 ∈ 𝐶. (2.3) 
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This implies that  

 

 ∥ 𝑥 − 𝑦 ∥2≥∥ 𝑥 − 𝑃𝐶𝑥 ∥
2 +∥ 𝑦 − 𝑃𝐶𝑥 ∥

2, ∀𝑥 ∈ 𝐻, ∀𝑦 ∈ 𝐶. (2.4) 

 

In real Hilbert space 𝐻, it is well known that  

 

 ∥ 𝜆𝑥 + (1 − 𝜆)𝑦 ∥2= 𝜆 ∥ 𝑥 ∥2+ (1 − 𝜆) ∥ 𝑦 ∥2− 𝜆(1 − 𝜆) ∥ 𝑥 − 𝑦 ∥2, (2.5) 

 

for all 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ [0,1] and  

 

 ∥ 𝑥 + 𝑦 ∥2≤∥ 𝑥 ∥2+ 2〈𝑦, 𝑥 + 𝑦〉, ∀𝑥, 𝑦 ∈ 𝐻. (2.6) 

  

Let 𝑇: 𝐶 → 𝐻 be a mapping. The set of attractive points of 𝑇 denoted by 𝐴(𝑇) and defined 

as 

 

 𝐴(𝑇) = {𝑦 ∈ 𝐻: ∥ 𝑇𝑥 − 𝑦 ∥≤∥ 𝑥 − 𝑦 ∥, ∀𝑥 ∈ 𝐶}. (2.7) 

 

Lemma 1.1 [4] Let 𝐶 be a nonempty subset 𝐻 and let 𝑇 be a mapping from 𝐶 into 𝐻. 

Then, 𝐴(𝑇) is closed and convex subset of 𝐻.  

 

Lemma 1.2 [4] Let 𝐶 be a nonempty subset of 𝐻 and let 𝑇: 𝐶 → 𝐻 be a generalized 

hybrid mapping from 𝐶 into self. Suppose that there exists an 𝑥 ∈ 𝐶 such that {𝑇𝑛𝑥} 
is bounded. Then, 𝐴(𝑇) ≠ 𝜙.  

 

Lemma 1.3 [4] Let 𝐶 be a nonempty subset of 𝐻. Let 𝑇: 𝐶 → 𝐻 be a quasi-nonexpansive 

mapping. Then, 𝐴(𝑇) ∩ 𝐶 = 𝐹𝑖𝑥(𝑇).  

 

Lemma 1.4 [6] Let 𝐶 be a nonempty subset of 𝐻. Let 𝑇: 𝐶 → 𝐻 be a generalized hybrid 

mapping. If 𝑥𝑛 ⇀ 𝑥0 and 𝑥𝑛 − 𝑇𝑥𝑛 → 0, then 𝑥0 ∈ 𝐴(𝑇).  

 

3.  Main results 

We prove a weak convergence theorem for finding attractive points of a generalized hybrid 

mapping in a Hilbert space. 

 

Theorem 4.5:  Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty convex subset of a 

real Hilbert space 𝐻 . Let 𝑇𝑖: 𝐶 → 𝐶  be nonexpansive mappings for each 𝑖 =
0,1,2, . . . , 𝑚 − 1  with 𝐴(𝑇𝑖) ≠ ∅  and let 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
 be the metric projection of 𝐻 

onto ⋂𝑚−1
𝑖=0 𝐴(𝑇𝑖). Let {𝑥𝑛} be a sequence in 𝐶 generated by 
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𝑥1 ∈ 𝐶
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛,

 

where {𝛼𝑛} and {𝛽𝑛} are two sequences in (0,1) such that lim 𝑖𝑛𝑓𝑛→∞𝛽𝑛(1 − 𝛼𝑛)(1 −
𝛽𝑛) > 0. Then the sequence {𝑥𝑛} converges weakly to 𝑥̅ = 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
𝑧.  

 

Proof. First, we show that the sequence {𝑥𝑛} is bounded. Let 𝑝 ∈ ⋂𝑚−1
𝑖=0 𝐴(𝑇𝑖). 

We estimate  

 ∥ 𝑥𝑛+1 − 𝑝 ∥=∥ 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛 − 𝑝 ∥ 
=∥ 𝛼𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)(𝑦𝑛 − 𝑝) ∥ 
≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥ +(1 − 𝛼𝑛) ∥ 𝑦𝑛 − 𝑝 ∥ (3.1) 

and 

 

∥ 𝑦𝑛 − 𝑝 ∥ ≤ ∥ 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥  

=∥ 𝛽𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝) ∥ 

≤ 𝛽𝑛 ∥ 𝑥𝑛 − 𝑝 ∥ +(1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥ 

≤ 𝛽𝑛 ∥ 𝑥𝑛 − 𝑝 ∥ +(1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ 
=∥ 𝑥𝑛 − 𝑝 ∥. (3.2) 

 

Using (3.2) in (3.1)  

  
∥ 𝑥𝑛+1 − 𝑝 ∥ ≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥ +(1 − 𝛼𝑛) ∥ 𝑥𝑛 − 𝑝 ∥

= ∥ 𝑥𝑛 − 𝑝 ∥

.

.

.
≤ ∥ 𝑥1 − 𝑝 ∥.

 

 

Hence, {𝑥𝑛} is bounded. Since 𝑝 ∈ ⋂𝑚−1
𝑖=0 𝐴(𝑇𝑖) therefore ∥ 𝑇𝑖𝑥𝑛 − 𝑝 ∥≤∥ 𝑥𝑛 − 𝑝 ∥, for 

each 𝑖 = 0,1,2, . . . , 𝑚 − 1. Thus, {𝑇𝑖𝑥𝑛} is bounded and hence {𝑦𝑛} is also bounded. 

 

Using (2.5), we estimate 

 ∥ 𝑥𝑛+1 − 𝑝 ∥
2=∥ 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛 − 𝑝 ∥2 (3.3) 
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=∥ 𝛼𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)(𝑦𝑛 − 𝑝) ∥2 

≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛) ∥ 𝑦𝑛 − 𝑝 ∥2−𝛼𝑛(1 − 𝛼𝑛) ∥ 𝑥𝑛 − 𝑦𝑛 ∥
2 

≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛) ∥ 𝑦𝑛 − 𝑝 ∥2,  

and  

 

∥ 𝑦𝑛 − 𝑝 ∥2=∥ 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥2 

=∥ 𝛽𝑛(𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛)(
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝) ∥2 

≤ 𝛽𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥2 

−𝛽𝑛(1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑥𝑛 ∥
2. 

(3.4) 

 

Using (3.4) in (3.3), we have 

 ∥ 𝑥𝑛+1 − 𝑝 ∥
2= 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛)𝛽𝑛 ∥ 𝑥𝑛 − 𝑝 ∥

2 

+(1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥2 

−𝛽𝑛(1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥2. 

 

 

 

This implies that 

 

𝛽𝑛(1 − 𝛼𝑛)(1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑝 ∥2≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛)𝛽𝑛

∥ 𝑥𝑛 − 𝑝 ∥2 

 +(1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥
1

𝑚
∑𝑚−1𝑖=0 𝑇𝑖𝑥𝑛 − 𝑝 ∥

2 −∥ 𝑥𝑛+1 − 𝑝 ∥2 

 ≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛)𝛽𝑛 ∥ 𝑥𝑛 − 𝑝 ∥
2 

 +(1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝) ∥
2 −∥ 𝑥𝑛+1 − 𝑝 ∥

2 

 ≤ 𝛼𝑛 ∥ 𝑥𝑛 − 𝑝 ∥2+ (1 − 𝛼𝑛) ∥ 𝑥𝑛 − 𝑝 ∥
2 −∥ 𝑥𝑛+1 − 𝑝 ∥

2 

 =∥ 𝑥𝑛 − 𝑝 ∥2 −∥ 𝑥𝑛+1 − 𝑝 ∥2.                                            (3.5) 

 

Now, summing  
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∑

∞

𝑛=1

𝛽𝑛(1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛 − 𝑥𝑛 ∥
2≤∥ 𝑥1 − 𝑝 ∥2< ∞ 

 

Using the given condition, we have  

 

 

lim
𝑛→∞

∥ 𝑡𝑚𝑥𝑛 − 𝑥𝑛 ∥= 0,where 𝑡𝑚 =
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖. 
(3.6) 

 

  ∥ 𝑥𝑛+1 − 𝑥𝑛 ∥=∥ 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛 − 𝑥𝑛 ∥ 
 =∥ (1 − 𝛼𝑛)(𝑦𝑛 − 𝑥𝑛) ∥ 
 =∥ (1 − 𝛼𝑛)(𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)𝑡𝑚𝑥𝑛 − 𝑥𝑛) ∥ 
 = (1 − 𝛼𝑛)(1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑡𝑚𝑥𝑛 ∥.  (3.7) 

                                   

Using (3.6) in (3.7) and given condition, we have  

 

 lim
𝑛→∞

∥ 𝑥𝑛+1 − 𝑥𝑛 ∥= 0. (3.8) 

 

Since {𝑥𝑛} is bounded therefore there exists a subsequence {𝑥𝑛𝑖} of {𝑥𝑛} such that 𝑥𝑛𝑖 ⇀

𝑤. By (3.6) and Lemma 2.4, we have that 𝑤 ∈ 𝐴(𝑡𝑚). Thus, for each 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, 

𝑤 ∈⋂
𝑚−1

𝑖=0
𝐴(𝑇𝑖). 

 

Finally, we prove that {𝑥𝑛} converges weakly to 𝑤. On contrary suppose that there exists 

another subsequence {𝑥𝑛𝑖} of {𝑥𝑛} which weakly converges to some 𝑤′ ≠ 𝑤. By (3.6) and 

Lemma 2.4, we have that 𝑤′ ∈ 𝐴(𝑡𝑚). Thus, for each 𝑖 = 0,1,2, . . . , 𝑚 − 1, 

𝑤′ ∈⋂
𝑚−1

𝑖=0
𝐴(𝑇𝑖). 

Now,  

lim
𝑛→∞

∥ 𝑥𝑛 −𝑤 ∥2 = lim
𝑘→∞

∥ 𝑥𝑛𝑘 −𝑤 ∥2

= lim
𝑘→∞

(∥ 𝑥𝑛𝑘 −𝑤′ ∥2+ 2〈𝑥𝑛𝑘 −𝑤′, 𝑤′ − 𝑤〉+∥ 𝑤′ − 𝑤 ∥2)

= lim
𝑘→∞

∥ 𝑥𝑛𝑘 −𝑤′ ∥
2+ 2〈𝑤 −𝑤′, 𝑤′ − 𝑤〉+∥ 𝑤′ − 𝑤 ∥2

= lim
𝑘→∞

∥ 𝑥𝑛𝑘 −𝑤′ ∥
2 −∥ 𝑤′ − 𝑤 ∥2

= lim
𝑛→∞

∥ 𝑥𝑛 −𝑤′ ∥2 −∥ 𝑤′ − 𝑤 ∥2

= lim
𝑖→∞

∥ 𝑥𝑛𝑖 −𝑤′ ∥
2 −∥ 𝑤′ − 𝑤 ∥2
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= lim
𝑖→∞

∥ 𝑥𝑛𝑖 −𝑤′ ∥2 −∥ 𝑤′ − 𝑤 ∥2

= lim
𝑖→∞

(∥ 𝑥𝑛𝑖 −𝑤′ ∥2+ 2〈𝑥𝑛𝑖 −𝑤,𝑤 − 𝑤′〉+∥ 𝑤 − 𝑤′ ∥2)

−∥ 𝑤′ − 𝑤 ∥2

= lim
𝑖→∞

∥ 𝑥𝑛𝑖 −𝑤 ∥2− 2 ∥ 𝑤 −𝑤′ ∥2

= lim
𝑛→∞

∥ 𝑥𝑛 −𝑤 ∥2− 2 ∥ 𝑤 − 𝑤′ ∥2.

 

 

This implies that 𝑤 = 𝑤′, a contradiction. 

Thus, the sequence {𝑥𝑛} converges weakly to an attractive point 𝑤 of 𝑇𝑖 , for each 𝑖 =
0,1,2, . . . , 𝑚 − 1.  

 

Using Theorem 3.1, we can prove the following convergence theorems: 

 

Theorem 4.6:  Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty closed and convex 

subset of 𝐻 . Let 𝑇𝑖: 𝐶 → 𝐶  be a generalized hybrid mapping for each 𝑖 =
0,1,2, . . . , 𝑚 − 1 with 𝐴(𝑇𝑖) ≠ ∅ and let 𝑃⋂𝑚−1

𝑖=0 𝐹𝑖𝑥(𝑇𝑖)
 be the metric projection of 𝐻 

onto ⋂𝑚−1
𝑖=0 𝐹𝑖𝑥(𝑇𝑖). Let {𝑥𝑛} be a sequence in 𝐶 generated by 

𝑥1 ∈ 𝐶
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛,

 

where {𝛼𝑛} and {𝛽𝑛} are two sequences in (0,1) such that 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝛽𝑛(1 − 𝛼𝑛)(1 −
𝛽𝑛) > 0. Then the sequence {𝑥𝑛} converges weakly to 

𝑥̅ = 𝑃⋂𝑚−1
𝑖=0 𝐹𝑖𝑥(𝑇𝑖)

𝑤. 

 

Proof. For each 𝑖 = 0,1,2, . . . , 𝑚 − 1, 𝑇𝑖: 𝐶 → 𝐶 be a generalized hybrid mapping then there 

exist 𝛼, 𝛽 ∈ ℝ such that  

 𝛼 ∥ 𝑇𝑖𝑥 − 𝑇𝑖𝑦 ∥
2+ (1 − 𝛼) ∥ 𝑥 − 𝑇𝑖𝑦 ∥

2≤ 𝛽 ∥ 𝑇𝑖𝑥 − 𝑦 ∥2+ (1 − 𝛽)
∥ 𝑥 − 𝑦 ∥2, ∀𝑥, 𝑦 ∈ 𝐶. 

(3.9) 

   

Let 𝑤 ∈ ⋂𝑚−1
𝑖=0 F𝑖𝑥(𝑇𝑖) and replacing 𝑥 by 𝑤 in (3.9), we have  

 

∥ 𝑇𝑖𝑦 − 𝑤 ∥≤∥ 𝑦 − 𝑤 ∥, ∀𝑦 ∈ 𝐶. 
 

This implies that 

𝑤 ∈⋂
𝑚−1

𝑖=0
F𝑖𝑥(𝑇𝑖). 

Thus, 
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⋂
𝑚−1

𝑖=0
F𝑖𝑥(𝑇𝑖) ⊂⋂

𝑚−1

𝑖=0
𝐴(𝑇𝑖). 

Hence, 

⋂
𝑚−1

𝑖=0
𝐴(𝑇𝑖) ≠ ∅. 

 

By Theorem 3.1, it follows that {𝑥𝑛} converges weakly to 

𝑥̅ ∈⋂
𝑚−1

𝑖=0
𝐴(𝑇𝑖). 

Since 𝐶 is closed and convex therefore by Lemma 3.3, 

⋂
𝑚−1

𝑖=0
𝐴(𝑇𝑖)⋂ 𝐶 =⋂

 𝑚−1

𝑖=0
F𝑖𝑥(𝑇𝑖). 

 

Thus, {𝑥𝑛} converges weakly to an element 

∈̅ ⋂
𝑚−1

𝑖=0
F𝑖𝑥(𝑇𝑖). 

 

Theorem 4.7:  Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty convex subset of 𝐻. 

Let 𝑇𝑖: 𝐶 → 𝐶 be a nonexpansive mapping for each 𝑖 = 0,1,2, . . . , 𝑚 − 1 with 𝐴(𝑇𝑖) ≠
∅ and let 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
 be the metric projection of 𝐻 onto ⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖). Let {𝑥𝑛} be a 

sequence in 𝐶 generated by 
𝑥1 ∈ 𝐶
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛,

 

where {𝛼𝑛} and {𝛽𝑛} are two sequences in (0,1) such that 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝛽𝑛(1 − 𝛼𝑛)(1 −
𝛽𝑛) > 0. Then, the sequence {𝑥𝑛} converges weakly to 𝑥̅ = 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
𝑤. Additionally, if 

𝐶 is closed and convex then {𝑥𝑛} converges weakly to 

𝑥̅ = 𝑃⋂𝑚−1
𝑖=0 𝐹𝑖𝑥(𝑇𝑖)

𝑤. 

 

Proof. A generalized hybrid mapping is nonexpansive mapping by taking 𝛼 = 0 and 𝛽 =
1. Thus, by using Theorem 3.1 and 3.2, we got the result.  

Theorem 4.8:  Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty convex subset of 𝐻. 

Let 𝑇𝑖: 𝐶 → 𝐶 be a nonspreading mapping for each 𝑖 = 0,1,2, . . . , 𝑚 − 1 with 𝐴(𝑇𝑖) ≠
∅ and let 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
 be the metric projection of 𝐻 onto ⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖). Let {𝑥𝑛} be a 

sequence in 𝐶 generated by 
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𝑥1 ∈ 𝐶
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛,

 

where {𝛼𝑛} and {𝛽𝑛} are two sequences in (0,1) such that 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝛽𝑛(1 − 𝛼𝑛)(1 −
𝛽𝑛) > 0. Then, the sequence {𝑥𝑛} converges weakly to 𝑥̅ = 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
𝑤. Additionally, if 

𝐶 is closed and convex then {𝑥𝑛} converges weakly to 𝑥̅ = 𝑃⋂𝑚−1
𝑖=0 𝐹𝑖𝑥(𝑇𝑖)

𝑤.  

 

Proof. A generalized hybrid mapping is nonspreading mapping by taking 𝛼 = 2 and 𝛽 =
1. Thus, by using Theorem 4.1 and 4.2, we got the result.  

 

Theorem 4.9:  Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty convex subset of 𝐻. 

Let 𝑇𝑖: 𝐶 → 𝐶 be a hybrid mapping for each 𝑖 = 0,1,2, . . . , 𝑚 − 1 with 𝐴(𝑇𝑖) ≠ ∅ and 

let 𝑃⋂𝑚−1
𝑖=0 𝐴(𝑇𝑖)

 be the metric projection of 𝐻  onto ⋂𝑚−1
𝑖=0 𝐴(𝑇𝑖) . Let {𝑥𝑛}  be a 

sequence in 𝐶 generated by 
𝑥1 ∈ 𝐶
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑦𝑛

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)
1

𝑚
∑

𝑚−1

𝑖=0

𝑇𝑖𝑥𝑛,

 

where {𝛼𝑛} and {𝛽𝑛} are two sequences in (0,1) such that lim 𝑖𝑛𝑓𝑛→∞𝛽𝑛(1 − 𝛼𝑛)(1 −
𝛽𝑛) > 0. Then, the sequence {𝑥𝑛} converges weakly to 𝑥̅ = 𝑃⋂𝑚−1

𝑖=0 𝐴(𝑇𝑖)
𝑤. Additionally, if 

𝐶 is closed and convex then {𝑥𝑛} converges weakly to 

𝑥̅ = 𝑃⋂𝑚−1
𝑖=0 𝐹𝑖𝑥(𝑇𝑖)

𝑤. 

 

Proof. A generalized hybrid mapping is hybrid mapping by taking 𝛼 =
3

2
 and 𝛽 =

1

2
. Thus, 

by using Theorem 3.1 and 3.2, we got the result.  
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Abstract: In this paper, we aim to introduce a new extension of beta function and study its important 

properties. Using this definition, new extended hypergeometric and confluent hypergeometric 

functions are obtained. Further, some hybrid representations of this extended beta function are derived 

which include some well-known special functions and polynomials.  

 
Keywords: Gamma function, Beta function, Hypergeometric function, Confluent hypergeometric 

function, Beta Distribution 

 

1. Introduction and preliminaries 

Extending well known special functions have been an active and interesting area of research. 

For the extension of beta and other special functions, several papers are published in literature 

(see [1]-[13], [15], [17]) due to their never-ending applications. Following up with the 

investigation, we define here a new extension of beta function and derive its integral 

representations, summation formula and some other relations. Further, we obtain beta 

distribution and some statistical formulas. Finally, using our definition of extended beta 

function 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) , we extend the definitions of hypergeometric and confluent 

hypergeometric functions. At last, we obtain connections of extended beta function with other 

special functions and polynomials from application viewpoint. 

 

Throughout the paper, let ℂ, ℝ, ℝ+ and ℤ0
− be the sets of complex numbers, real numbers, 

positive real numbers and non positive integers respectively, and let ℝ0
+:= ℝ ∪ {0}. 

  

Definition 1.1 As is well known, the Gamma function 𝛤(𝑧) developed by Euler [1] with 

the intent to extend the factorials to values between the integers is defined by the definite 

integral  

 
Γ(𝑧): = ∫

∞

0

 𝑒−𝑡𝑡𝑧−1 𝑑𝑡    (ℜ(𝑧) > 0), 
(1.1) 

 

Among various extensions of gamma function, we mention here the extended gamma 

function [6] defined by Chaudhry and Zubair  
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Γ𝑝(𝑧) =:∫

∞

0

 𝑡𝑧−1 exp (−𝑡 −
𝑝

𝑡
)  𝑑𝑡    (ℜ(𝑝) > 0). 

(1.2) 

 

Definition 1.2 Euler introduced the beta function (see [1]) for a pair of complex numbers 

𝜂1 and 𝜂2 with positive real part through the integral  

𝐵(𝜂1, 𝜂2) = ∫
1

0

 𝑡𝜂1−1 (1 − 𝑡)𝜂2−1𝑑𝑡    =
Γ(𝜂1)Γ(𝜂2)

Γ(𝜂1 + 𝜂2)
=
(𝜂1 − 1)! (𝜂2 − 1)!

(𝜂1 + 𝜂2 − 1)!
. 

(1.3) 

 

In 1997, Chaudhry et al. [3] defined an extension of beta function as  

𝐵𝑝(𝜂1, 𝜂2) = ∫
1

0

 𝑡𝜂1−1 (1 − 𝑡)𝜂2−1 exp (−
𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡,    (ℜ(𝑝) > 0). 

(1.4) 

 

Shadab et al. [15] introduced an interesting extension of the beta function involving the 

Mittag Leffler function defined as  

𝐵𝑝
𝜆(𝜂1, 𝜂2) = ∫

1

0

 𝑡𝜂1−1 (1 − 𝑡)𝜂2−1 𝐸𝜆 (−
𝑝

𝑡(1 − 𝑡)
)𝑑𝑡    (ℜ(𝑝) > 0 ;  𝜆 ∈ ℝ0

+), 
(1.5) 

where 𝐸𝜆(. ) is the classical Mittag Leffler function defined as  

 

 
𝐸𝜆(𝑥) = ∑

∞

𝑛=0

 
𝑥𝑛

Γ(𝜆𝑛 + 1)
. 

(1.6) 

  

Note that, by putting 𝜆 = 1, the above definition corresponds to the extended beta function 

[3] and on putting 𝜆 = 1 and 𝑝 = 0, we get the basic beta function given by (1.3). 

 

They also studied the extended form of beta distribution [15]  

𝑓(𝑡) = {

1

𝐵𝑝
𝜆(𝜂, 𝛽)

𝑡𝜂−1 (1 − 𝑡)𝛽−1 𝐸𝜆 (−
𝑝

𝑡(1 − 𝑡)
)    0 < 𝑡 < 1

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 

(1.7) 

 

Definition 1.3 The classical Gauss’s hypergeometric function is defined by  

 2𝐹1 [
𝑎, 𝑏;
𝑐; 𝑧] = ∑

∞

𝑛=0

 
(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

 
𝑧𝑛

𝑛!
=  𝑞2𝐹1(𝑎, 𝑏; 𝑐;  𝑧), 

(1.8) 

where (𝑎)𝑛 (𝑎 ∈ ℂ) is the well known Pochhammer symbol. 
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It is a particular case of the generalized hypergeometric series  𝑝𝐹𝑞 (𝑝, 𝑞 ∈ ℕ0) defined by  

 𝑝𝐹𝑞 [

𝑎1, … , 𝑎𝑝;

𝑏1, … , 𝑏𝑞; 𝑧] = ∑

∞

𝑛=0

 
(𝑎1)𝑛⋯(𝑎𝑝)𝑛
(𝑏1)𝑛⋯(𝑏𝑞)𝑛

 
𝑧𝑛

𝑛!
. 

 

The confluent hypergeometric function (see [1]) is given by the series representation  

 
 1𝐹1(𝑎; 𝑏;  𝑧) = ∑

∞

𝑛=0

 
(𝑎)𝑛
(𝑏)𝑛

 
𝑧𝑛

𝑛!
. 

(1.9) 

 

The extended hypergeometric and confluent hypergeometric functions [4] are defined 

respectively by  

 
𝐹𝑝(𝜂1, 𝜂2, 𝜂3; 𝑧) = ∑

∞

𝑛=0

 (𝜂1)𝑛
𝐵𝑝(𝜂2 + 𝑛, 𝜂3 − 𝜂2)

𝐵(𝜂2, 𝜂3 − 𝜂2)
 
𝑧𝑛

𝑛!
 

(𝑝 ≥ 0,ℜ(𝜂3) > ℜ(𝜂2) > 0 and |𝑧| < 1) (1.10) 

and  

 
Φ𝑝(𝜂2; 𝜂3; 𝑧) = ∑

∞

𝑛=0

 
𝐵𝑝(𝜂2 + 𝑛, 𝜂3 − 𝜂2)

𝐵(𝜂2, 𝜂3 − 𝜂2)
 
𝑧𝑛

𝑛!
, 

(𝑝 ≥ 0,ℜ(𝜂3) > ℜ(𝜂2) > 0 and |𝑧| < 1). (1.11) 

 

Their integral representations are:  

𝐹𝑝(𝜂1, 𝜂2, 𝜂3; 𝑧) =
1

𝐵(𝜂2, 𝜂2 − 𝜂3)
∫
1

0

𝑡𝜂2−1(1 − 𝑡)𝜂3−𝜂2−1 (1 − 𝑧𝑡)−𝜂1  exp (−
𝑝

𝑡(1 − 𝑡)
)  𝑑𝑡 

(𝑝 > 0;  𝑝 = 0 and |𝑧| < 1;  ℜ(𝜂3) > ℜ(𝜂2) > 0), (1.12) 

and  

𝜙𝑝(𝜂2; 𝜂3; 𝑧) =
1

𝐵(𝜂2, 𝜂2 − 𝜂3)
∫
1

0

𝑡𝜂2−1(1 − 𝑡)𝜂3−𝜂2−1 exp (𝑧𝑡 −
𝑝

𝑡(1 − 𝑡)
)  𝑑𝑡, 

(𝑝 > 0;  𝑝 = 0 and ℜ(𝜂3) > ℜ(𝜂2) > 0). (1.13) 

 

2. A new extension of Beta function 

Here, we introduce a new extension of the generalized Beta function 𝐵𝑝
𝜆(𝜂1, 𝜂2) in (1.5) 

and obtain its various properties and representations.  

 

Definition 2.1 We define a new extension of beta function as  

 
𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∫

1

0

 𝑡𝜂1−1 (1 − 𝑡)𝜂2−1 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

(1 − 𝑡)
)  𝑑𝑡 

(2.1) 
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(ℜ(𝑝) ≥ 0,ℜ(𝑞) ≥ 0;  𝜆 > 0), 

where 𝐸𝜆 is the Mittag-Leffler function.  

  

Remark 2.1 Note that for 𝜆 = 1, (2.1) reduce to definition [7]. For 𝑝 = 𝑞 and 𝑝 = 0 = 𝑞, 

(2.1) reduce to the extended beta function [15] and the classical beta function given by (1.3) 

respectively.  

  

2.1 Integral Representations of 𝑩𝒑,𝒒
𝝀 (𝜼𝟏, 𝜼𝟐) 

Theorem 1 The following integral representations holds:  

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = 2∫

𝜋
2

0

 cos2𝜂1−1𝜃 sin2𝜂2−1 𝜃 𝐸𝜆 [−
𝑝

cos2𝜃
 −

𝑞

sin2𝜃
]  𝑑𝜃,     

(2.2) 

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∫

∞

0

 
𝑢𝜂1−1

(1 + 𝑢)𝜂1+𝜂2
𝐸𝜆 (−

𝑝(1 + 𝑢)

𝑢
−

𝑞

1 + 𝑢
)  𝑑𝑢,     

(2.3) 

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = 21−𝜂1−𝜂2     × ∫

1

−1

 (1 + 𝑢)𝜂1−1 (1

− 𝑢)𝜂2
𝑢𝜂1−1

(1 + 𝑢)𝜂1+𝜂2−1
𝐸𝜆 (−

2(𝑝 + 𝑞) + 2(𝑞 − 𝑝)𝑢

1 − 𝑢2
)  𝑑𝑢, 

(2.4) 

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = (𝑐 − 𝑎)1−𝜂1−𝜂2     × ∫

𝑐

𝑎

 (𝑢 − 𝑎)𝜂1−1(𝑐

− 𝑢)𝜂2−1𝐸𝜆 [−
𝑐 − 𝑎

(𝑢 − 𝑎)(𝑐 − 𝑢)
((𝑞 − 𝑝)𝑢 + (𝑝𝑐 − 𝑞𝑎))]  𝑑𝑢, 

(ℜ(𝑝) > 0,ℜ(𝑞) > 0;  𝑝 ≥ 0, 𝑞 ≥ 0;  ℜ(𝜂1) > 0,ℜ(𝜂2) > 0). (2.5) 

 

Proof. Let 𝑡 = 𝑐𝑜𝑠2 𝜃, 𝑡 =
𝑢

1+𝑢
, 𝑡 =

1+𝑢

2
, 𝑡 =

𝑢−𝑎

𝑐−𝑎
 respectively in equations (2.1), we 

obtain the above representations.  

  

Remark 2.2 The above results retrieve the corresponding representations in [15] and [7] by 

taking 𝑝 = 𝑞 and 𝜆 = 1 respectively. Further for 𝑝 = 0 = 𝑞 and 𝜆 = 1, the results 

reduce to some well-known results for the beta function 𝐵(𝜂1, 𝜂2).  

 

3. Properties of 𝑩𝒑,𝒒
𝝀 (𝜼𝟏, 𝜼𝟐) 

In this section we obtain some interesting relations, summation formulas and product 

formulas for the generalized beta function 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2).  

 

Theorem 2 The extended beta function satisfies the following functional relation:  

 𝐵𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2) + 𝐵𝑝,𝑞

𝜆 (𝜂1, 𝜂2 + 1) = 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2). (3.1) 
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Proof. Using (2.1) in the l.h.s. of (3.1), we get  

  

𝐵𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2) + 𝐵𝑝,𝑞

𝜆 (𝜂1, 𝜂2 + 1)

= ∫
1

0

 { 𝑡𝜂1  (1 − 𝑡)𝜂2−1 + 𝑡𝜂1−1 (1 − 𝑡)𝜂2  } 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡, 

 and a little manipulation leads us to the desired result.  

  

Remark 3.1 Again, the case 𝑝 = 𝑞 and 𝑝 = 0 = 𝑞 of equation (3.1) reduces to the 

corresponding result in [15] and some known relations.  

  

Theorem 3 The following summation formula is valid for 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2):  

 
𝐵𝑝,𝑞
𝜆 (𝜂1, 1 − 𝜂2) = ∑

∞

𝑛=0

 
(𝜂2)𝑛
𝑛!

 𝐵𝑝,𝑞
𝜆 (𝜂1 + 𝑛, 1)    (ℜ(𝑝) > 0,ℜ(𝑞) > 0). 

(3.2) 

 

Proof. To prove above result, we make use of the generalized binomial theorem defined as  

 
(1 − 𝑡)−𝜂2 = ∑

∞

𝑛=0

 (𝜂2)𝑛  
𝑡𝑛

𝑛!
,    (|𝑡| < 1). 

 

 

Therefore, from definition (2.1), we can write  

𝐵𝑝,𝑞
𝜆 (𝜂1, 1 − 𝜂2) = ∫

1

0

 ∑

∞

𝑛=0

(𝜂2)𝑛  
𝑡𝜂1+𝑛−1

𝑛!
 𝐸𝜆 (−

𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡. 

Now by interchanging the order of integration and summation, we can easily obtain the 

desired formula.  

  

Theorem 4 For ℜ(𝑝) > 0, ℜ(𝑞) > 0, the following infinite summation formula holds:  

 
𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∑

∞

𝑛=0

 𝐵𝑝,𝑞
𝜆 (𝜂1 + 𝑛, 𝜂2 + 1). 

(3.3) 

 

Proof. Using the relation  

(1 − 𝑡)𝜂2−1 = (1 − 𝑡)𝜂2  ∑

∞

𝑛=0

 𝑡𝑛, 

 We obtain  

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∫

1

0

(1 − 𝑡)𝜂2 ∑

∞

𝑛=0

 𝑡𝜂1+𝑛−1𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡. 

 Interchanging the order of integration and summation in the last expression leads us to the 
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desired result.  

  

Theorem 5 The following relation holds true:  

 
𝐵𝑝,𝑞
𝜆 (𝜂, −𝜂 − 𝑛) = ∑

𝑛

𝑘=0

 (
𝑛
𝑘
)𝐵𝑝,𝑞

𝜆 (𝜂 + 𝑘,−𝜂 − 𝑘)    (𝑛 ∈ ℕ0). 
(3.4) 

 

Proof. We have  

𝐵𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2) + 𝐵𝑝,𝑞

𝜆 (𝜂1, 𝜂2 + 1) = 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2). 

 

 On substituting 𝜂1 = 𝜂 and 𝜂2 = −𝜂 − 𝑛 above, we arrive at  

𝐵𝑝,𝑞
𝜆 (𝜂, −𝜂 − 𝑛) = 𝐵𝑝,𝑞

𝜆 (𝜂, −𝜂 − 𝑛 + 1) + 𝐵𝑝,𝑞
𝜆 (𝜂 + 1,−𝜂 − 𝑛). 

  

Writing this formula recursively with 𝑛 = 1,2,3.…,, we obtain  

    𝐵𝑝,𝑞
𝜆 (𝜂, −𝜂 − 1) = 𝐵𝑝,𝑞

𝜆 (𝜂, −𝜂) + 𝐵𝑝,𝑞
𝜆 (𝜂 + 1,−𝜂 − 1), 

𝐵𝑝,𝑞
𝜆 (𝜂, −𝜂 − 2) = 𝐵𝑝,𝑞

𝜆 (𝜂, −𝜂) + 2𝐵𝑝,𝑞
𝜆 (𝜂 + 1,−𝜂 − 1) + 𝐵𝑝,𝑞

𝜆 (𝜂 + 2,−𝜂 − 2), 

 and so on. By continuing the process, we arrive at (3.4).  

 

In statistical distribution theory, gamma and beta functions have been used extensively. We 

now define the beta distribution of (2.1), and obtain its mean, variance and moment 

generating function. 

 

For 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2), the beta distribution is given by  

𝑓(𝑡) = {

1

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

𝑡𝜂1−1(1 − 𝑡)𝜂2−1 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

(1 − 𝑡)
)    (0 < 𝑡 < 1),

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 

(3.5) 

   

For any real number 𝜈, we have the 𝑑th moment of a random variable 𝑋 as  

 
𝔼(𝑋𝜈) =

𝐵𝑝,𝑞
𝜆 (𝜂1 + 𝜈, 𝜂2)

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

 

(𝜂1, 𝜂2 ∈ ℝ;  𝑝, 𝑞, 𝜆 ∈ ℝ
+). (3.6) 

 

When 𝜈 = 1, we get the mean as a particular case of (3.6)  

 
𝜇 = 𝔼(𝑋) =

𝐵𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2)

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

, 
(3.7) 

 

and the variance of the distribution is defined by  
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𝜎2 = 𝔼(𝑋2) − {𝔼(𝑋)}2 =
𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) 𝐵𝑝,𝑞

𝜆 (𝜂1 + 2, 𝜂2) − {𝐵𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2)}

2

{𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)}

2 . 
(3.8) 

   

The moment generating function of the distribution is defined by  

 
𝑀(𝑡) = ∑

∞

𝑛=0

 
𝑡𝑛

𝑛!
 𝔼(𝑋𝑛) =

1

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

∑

∞

𝑛=0

 𝐵𝑝,𝑞
𝜆 (𝜂1 + 𝑛, 𝜂2)

𝑡𝑛

𝑛!
. 

(3.9) 

 

The cumulative distribution is given by  

 
𝐹(𝑥) =

𝐵𝑧,𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

 
(3.10) 

where  

 
𝐵𝑥,𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2) = ∫

𝑥

0

 𝑡𝜂1−1(1 − 𝑡)𝜂2−1 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

(1 − 𝑡)
) 𝑑𝑡 

(𝑝 > 0, 𝑞 > 0, 𝜆 > 0,−∞ < 𝜂1, 𝜂2 < ∞) (3.11) 

is the extended incomplete beta function. 

  

4. Generalization of Extended Hypergeometric and Confluent Hypergeometric 

functions 

Here, we introduce a generalization of extended hypergeometric and confluent 

hypergeometric functions in terms of 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2). 

 
𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧) = ∑

∞

𝑛=0

 (𝜂1)𝑛  
𝐵𝑝,𝑞
𝜆 (𝜂2 + 𝑛, 𝜂3 − 𝜂2)

𝐵(𝜂2; 𝜂3 − 𝜂2)
 
𝑧𝑛

𝑛!
, 

(𝑝 ≥ 0, 𝑞 ≥ 0, |𝑧| < 1, 𝜆 > 0,ℜ(𝜂3) > ℜ(𝜂2) > 0) (4.1) 

and  

 
Φ𝑝,𝑞
𝜆 (𝜂2; 𝜂3; 𝑧) = ∑

∞

𝑛=0

 
𝐵𝑝,𝑞
𝜆 (𝜂2 + 𝑛, 𝜂3 − 𝜂2)

𝐵(𝜂2; 𝜂3 − 𝜂2)
 
𝑧𝑛

𝑛!
. 

(𝑝 > 0, 𝑞 > 0, 𝜆 > 0,ℜ(𝜂3) > ℜ(𝜂2) > 0) (4.2) 

 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧) and Φ𝑝,𝑞

𝜆 (𝜂2; 𝜂3; 𝑧) are the further generalizations of the extended Gauss 

hypergeometric function and extended confluent hypergeometric function given by (1.10) 

and (1.11) respectively. 
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4.1 Integral Representations 

Theorem 6 The following integral representations for the extended hypergeometric 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧) and confluent hypergeometric function 𝛷𝑝,𝑞

𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧) holds true: 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)

=
1

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

1

0

 𝑡𝜂2−1 (1

− 𝑡)𝜂3−𝜂2−1 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
) ∑

∞

𝑛=0

(𝜂1)𝑛
(𝑧𝑡)𝑛

𝑛!
 𝑑𝑡, 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  𝑝 = 0, 𝑞 = 0 𝑎𝑛𝑑 |𝑧| < 1;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.3) 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)

=
1

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

1

0

 𝑡𝜂2−1 (1 − 𝑡)𝜂3−𝜂2−1 (1

− 𝑧𝑡)−𝜂1  𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡, 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  𝑝 = 0, 𝑞 = 0 𝑎𝑛𝑑 |arg(1 − 𝑧)| < 𝜋;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.4) 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)

=
1

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

∞

0

 𝑢𝜂2−1 (1 + 𝑢)𝜂1−𝜂3  [𝑢(1

− 𝑧)]−𝜂1  𝐸𝜆 (−
𝑝(1 + 𝑢)

𝑢
− 𝑞(1 + 𝑢))  𝑑𝑢, 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  𝑝 = 0, 𝑞 = 0 𝑎𝑛𝑑 |arg(1 − 𝑧)| < 𝜋;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.5) 

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)

=
2

𝐵(𝜂2, 𝜂3 − 𝜂2)

× ∫

𝜋
2

0

 
sin2𝜂2−1𝑣 cos2𝜂3−2𝜂2−1 𝑣

(1 − 𝑧sin2𝑣)𝜂1
  𝐸𝜆(−𝑝sec

2𝑣 − 𝑞csc2𝑣) 𝑑𝑣, 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  𝑝 = 0, 𝑞 = 0 𝑎𝑛𝑑 |arg(1 − 𝑧)| < 𝜋;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.6) 

Φ𝑝,𝑞
𝜆 (𝜂2; 𝜂3; 𝑧) =

exp(𝑧𝑡)

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

1

0

 𝑡𝜂2−1 (1 − 𝑡)𝜂3−𝜂2−1 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡, 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.7) 

Φ𝑝,𝑞
𝜆 (𝜂2; 𝜂3; 𝑧) =

exp(𝑧)

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

1

0

 𝑡𝜂2−1 (1

− 𝑡)𝜂3−𝜂2−1 exp(−𝑧𝑡) 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡. 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  ℜ(𝜂3) > ℜ(𝜂2) > 0). (4.8) 
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Proof. We can obtain (4.3) by using the definition (2.1) in (4.1). The integral (4.4) can be 

obtained by using the binomial expansion  

(1 − 𝑧𝑡)−𝜂1 = ∑

∞

𝑛=0

 (𝜂1)𝑛  
(𝑧𝑡)𝑛

𝑛!
 

 in (4.3). By substituting 𝑡 =
𝑢

1+𝑢
, 𝑡 = sin2𝑣 in (4.4), we obtain (4.5) and (4.6) 

respectively. By using a similar approach, we can easily establish the representations (4.7) 

and (4.8).  

 

Remark 4.1 The case 𝑝 = 𝑞 and 𝜆 = 1 in equations (4.3) -(4.8) leads to the 

corresponding results in [3]. For 𝑝 = 0 = 𝑞 and 𝜆 = 1, we get basic hypergeometric and 

confluent hypergeometric function [1].  

  

5  Differentiation formulas for 𝑭𝒑,𝒒
𝝀 (𝜼𝟏, 𝜼𝟐; 𝜼𝟑;  𝒛) and 𝚽𝒑,𝒒

𝝀 (𝜼𝟏, 𝜼𝟐; 𝜼𝟑;  𝒛) 

By differentiating (4.1) and (4.2), we obtain some differentiation formulas with the help of 

the formula:  

 𝐵(𝜂2, 𝜂3 − 𝜂1) =
𝜂3
𝜂2
 𝐵(𝜂2 + 1, 𝜂3 − 𝜂2). (5.1) 

  

Theorem 7 The following differentiation formulas are true:  

𝑑

𝑑𝑧
{𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)} =
𝜂1𝜂2
𝜂3

 𝐹𝑝,𝑞
𝜆 (𝜂1 + 1, 𝜂2 + 1; 𝜂3 + 1;  𝑧). 

(5.2) 

𝑑𝑟

𝑑𝑧𝑟
{𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)} =
(𝜂1)𝑟(𝜂2)𝑟
(𝜂3)𝑟

 𝐹𝑝,𝑞
𝜆 (𝜂1 + 𝑟, 𝜂2 + 𝑟; 𝜂3 + 𝑟;  𝑧)    (𝑟 ∈ ℕ0). 

(5.3) 

𝑑𝑟

𝑑𝑧𝑟
{Φ𝑝,𝑞

𝜆 (𝜂2; 𝜂3; 𝑧)} =
(𝜂2)𝑟
(𝜂3)𝑟

 Φ𝑝,𝑞
𝜆 (𝜂2 + 𝑟; 𝜂3 + 𝑟;  𝑧)    (𝑟 ∈ ℕ0). 

(5.4) 

 

Proof. By differentiating (4.1) with respect to 𝑧, we get  

𝑑

𝑑𝑧
{𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)} = ∑

∞

𝑛=1

 
𝐵𝑝,𝑞
𝜆 (𝜂2 + 𝑛, 𝜂3 − 𝜂2)

𝐵(𝜂2, 𝜂3 − 𝜂2)
 (𝜂1)𝑛  

𝑧𝑛−1

(𝑛 − 1)!
. 

On replacing 𝑛 by 𝑛 + 1 and using (4.4), we easily get (5.2). A recursive process of this 

establishes (5.3). In a similar way, we can obtain (5.4).  

  

Remark 5.1 The case 𝑝 = 𝑞 and 𝜆 = 1 in equations (4.3)-(4.8) leads to the corresponding 

results in [3]. For 𝑝 = 0 = 𝑞 and 𝜆 = 1, we get corresponding formulas for 

hypergeometric and confluent hypergeometric function (see [1]).  
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5.1 Transformation formulas 

The following formulas for the extended hypergeometric and confluent hypergeometric 

function holds true:  

 𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3;  𝑧) = (1 − 𝑧)−𝛼 𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂3 − 𝜂2; 𝜂3;  −
𝑧

1 − 𝑧
). (5.5) 

 (𝜆 ∈ ℝ+;  𝑝, 𝑞 ∈ ℝ0
+;  |𝑧| < 1;  ℜ(𝜂3) > ℜ(𝜂2) > 0).  

 
𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3;  1 −

1

𝑧
) = 𝑧𝛼  𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂3 − 𝜂2; 𝜂3;  1 − 𝑧). 
(5.6) 

 (𝜆 ∈ ℝ+;  𝑝, 𝑞 ∈ ℝ0
+;  |𝑧| < 1;  ℜ(𝜂3) > ℜ(𝜂2) > 0).  

 𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3;  

𝑧

1 + 𝑧
) = (1 + 𝑧)𝛼  𝐹𝑝,𝑞

𝜆 (𝜂1, 𝜂3 − 𝜂2; 𝜂3;  −𝑧). (5.7) 

 (𝜆 ∈ ℝ+;  𝑝, 𝑞 ∈ ℝ0
+;  |𝑧| < 1;  ℜ(𝜂3) > ℜ(𝜂2) > 0).  

 Φ𝑝,𝑞
𝜆 (𝜂2, 𝜂3;  𝑧) = 𝑒𝑧 Φ𝑝,𝑞

𝜆 (𝜂3 − 𝜂2; 𝜂3;  −𝑧). (5.8) 

 

Proof. Replacing 𝑡 by 1 − 𝑡 in (4.4) and with the help of expression  

[1 − 𝑧(1 − 𝑡)]−𝜂1 = (1 − 𝑧)−𝜂1  (1 +
𝑧

1 − 𝑧
𝑡)
−𝜂1

, 

 we have  

𝐹𝑝,𝑞
𝜆 (𝜂1, 𝜂2; 𝜂3; 𝑧)

=
(1 − 𝑧)−𝜂1

𝐵(𝜂2, 𝜂3 − 𝜂2)
× ∫

1

0

 𝑡𝜂2−1 (1

− 𝑡)𝜂3−𝜂2−1  (1 +
𝑧

1 − 𝑧
𝑡)
−𝜂1

 𝐸𝜆 (−
𝑝

𝑡
−

𝑞

1 − 𝑡
)  𝑑𝑡, 

(5.9) 

(𝑝 > 0, 𝑞 > 0;  𝜆 > 0;  𝑝 = 0, 𝑞 = 0 𝑎𝑛𝑑 |arg(1 − 𝑧)| < 𝜋;  ℜ(𝜂3) > ℜ(𝜂2) > 0) 

 

which easily proves (5.5). Replacing 𝑧 by (1 −
1

𝑧
) and (

𝑧

1+𝑧
) in (5.5) yields (5.6) and 

(5.7) respectively. Now the formula (5.8) can be obtained by following (4.7) and (4.8).  

  

6 Representations for 𝑩𝒑,𝒒
𝝀  (𝜼𝟏, 𝜼𝟐)  

In this section we obtain certain connections of the beta function (2.1) in terms of other 

special functions and polynomials. The results obtained here are interesting and can further 

be applied to other extensions of beta functions. 

 

• (Generalized hypergeometric representation). 

 

Since we have the relation [16]  
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𝐸𝜆,𝛽
𝛾,𝑞
(𝑧) = ∑

∞

𝑛=0

 
(𝛾)𝑞𝑛

Γ(𝜆𝑛 + 𝛽)
 
𝑧𝑛

𝑛!
=

1

Γ(𝛽)
 𝑞𝐹𝜆 [𝛥(𝑞; 𝛾);  𝛥(𝜆; 𝛽);    

𝑞𝑞𝑧

𝜆𝜆
], 

(6.1) 

where, 𝛥(𝑞, 𝛾) is a q-tuple 
𝛾

𝑞
, 
𝛾+1

𝑞
,...,

𝛾+𝑞−1

𝑞
.  

 

In particular, we have  

 
𝐸𝜆,1
1,1(𝑧) = 𝐸𝜆(𝑧) = ∑

∞

𝑛=0

 
𝑧𝑛

Γ(𝜆𝑛 + 1)
=1 𝐹𝜆 [𝛥(1; 1);  𝛥(𝜆, 1);    

𝑧

𝜆𝜆
]. 

(6.2) 

 

Now using (6.2) in (2.1), we have  

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∫

1

0

 𝑡𝜂1−1 (1

− 𝑡)𝜂2−1 ×1 𝐹𝜆 [𝛥(1; 1);  𝛥(𝜆, 1);    
1

𝜆𝜆
(−

𝑝

𝑡
−

𝑞

(1 − 𝑡)
)]  𝑑𝑡, 

(6.3) 

 

which can be written as  

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2)

= ∫
1

0

 
𝑢𝜂1−1

(1 + 𝑢)𝜂1+𝜂2
×1 𝐹𝜆 [𝛥(1; 1);  𝛥(𝜆, 1);    

(1 + 𝑢)[−𝑝 − 𝑞𝑢]

𝑢 𝜆𝜆
]  𝑑𝑢. 

(6.4) 

 

• (Fox  𝐻- function representation) 

 

The following relation between 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) and Fox-H function holds true:  

𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) = ∫

1

0

 𝑡𝜂1−1 (1 − 𝑡)𝜂2−1 𝐻0,2
1,0 [

𝑝

𝑡
+

𝑞

1 − 𝑡
 |    (0; 1); (0,1), (0, 𝜆)]  𝑑𝑡. 

(6.5) 

 

• (Bessel function and Laguerre polynomial representation) 

 

We obtain a relationship between the generalized beta function 𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2), Laguerre 

polynomials 𝐿𝑛
𝛽
(𝜆; 𝑥) and Bessel function 𝐽𝛽(𝑥). 

Since we have the relation [14]  

 
Γ(1 + 𝛽) (𝑥𝑡)

𝛽
2  𝐸𝜆(𝑡) 𝐽𝛽(2√𝑥𝑡) = ∑

∞

𝑛=0

 
𝐿𝑛
𝛽
(𝜆; 𝑥) 𝑡𝑛

(1 + 𝛽)𝑛
, 

(6.6) 
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 we can write  

 
𝐵𝑝,𝑞
𝜆 (𝜂1, 𝜂2) =

1

𝑥𝛽/2
∫
1

0

 
𝑡𝜂1−1 (1 − 𝑡)𝜂2−1

𝐽𝛽 (2√𝑥𝜇)
 (∑

∞

𝑛=0

𝐿𝑛
𝛽
(𝜆; 𝑥) (𝜇)𝑛−𝛽/2

(𝛽 + 𝑛)!
)  𝑑𝑡, 

(6.7) 

where, 𝜇 = −
𝑝

𝑡
−

𝑞

1−𝑡
.  

  

7 Discussion and Conclusion 

In this paper, we have introduced a new extension of beta function which seems to be 

interesting since by being specific on parameters, some well-known definitions of the beta 

function can be retrieved. Further, it is shown that this extended beta function can be 

represented in terms of other polynomials and special functions. As the beta and 

hypergeometric functions have so many applications in the literature, a lot more relationships 

with different functions can be found which may be potentially useful for further research. 
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Abstract: The calculation of the transition probabilities between two stationary energy states under a 

time dependent potential is one of the problems that can be investigated via time dependent 

perturbation theory. It explains how states of an unperturbed system vary with time under small 

perturbations. In this work we use analytical and semi analytical methods to study two levels of 

quantum mechanical systems using time dependent perturbation theory. In the first part of the work 

we focus on exact solutions and reconstruction techniques, we built the potential function from a given 

quantum amplitude, we obtained the potential for some physical models proposed in the literature as 

realistic models compatible with experiments, for example Rabbi effect and the dynamics of the 

electron in an external magnetic field. The second part is devoted to finding the distance between two 

nearby quantum states in Hilbert space. We conclude this work by finding this distance for Landau-

Zener effect as a two-level system. 

 
Keywords: Quantum Mechanics; perturbation theory; Rabbi effect  

  

1. Introduction 

There are many problems in quantum physics that physicists couldn’t solve exactly, 

especially the complex quantum systems. The physicists tried to solve those systems but 

instead of that they get a set of infinite differential equations [1, 2]. The Perturbation theory 

is a very powerful approximation in such systems, the quantum formulation which was 

invented by Paul Dirac to overcome such physical challenges [2, 3]. In this technique, we 

split the Hamiltonian of complex systems to an unperturbed system with known 

eigenfunctions of the Hamiltonian and a small perturbed Hamiltonian which represents the 

small disturbance of that system [3, 4]. The physical quantities related to the small 

disturbances, such as the energy levels and the eigenstate can be considered as corrections to 

the unperturbed system [4]. The Hamiltonian of the unperturbed system is considered as time 

independent, while the perturbation term can be either time dependent or not [5, 6]. The 

perturbation theory is classified in to two forms, depending in the potential disturbance and 

whether it depends to time or not. When the perturbation term is constant over time that leads 

to it being categorized as time independent perturbation theory. It modifies the behavior of 

the unperturbed eigenstates of the system and makes a difference between the stationary 

states for the perturbed system and the unperturbed system [7, 8]. The second class is the 

time dependent perturbation theory, here the perturbed part is no longer stationary and 
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changes explicitly with time [1]. 

 

The most important example of phenomena that can be solved it exactly by quantum 

mechanics is the transition probabilities between two eigenstates, when this transition 

happens under the perturbation term called V(𝑟,t), it varies with time or occurs suddenly [9, 

10]. Time dependent perturbation theory is the best approximation way to deal with transition 

probabilities under V(𝑟 ,t). It doesn’t modify the unperturbed system states as the time 

independent perturbation but instead of that is varying from one state to another or it makes 

transitions under the perturbation [8, 11]. The Rabbi’s effect is one of the applications related 

to time dependent perturbation theory. When the system absorbs plenty of photons it will be 

excited and after a period of time will emit those photons. This cyclic behavior between 

absorbing and emitting along the time is described as Rabi effect, it explains the cyclic 

oscillation of atoms between two quantum levels [1, 2, 6]. Another application is Fermi’s 

Golden Rule. This rule it describes the rate of transition between two energy states under 

small perturbation [12, 13]. In this work, we will use two method to study two levels quantum 

mechanical systems in the time dependent perturbation theory. In section 3 we will use 

reconstruction techniques to build up the potential forms for some physical models which are 

proposed in the literature as an example of the Rabi effect. In section 4 we will find the 

distance between two nearby quantum states in Hilbert space for a two-level system. The last 

section is devoted to finding the distance between two nearby quantum states especially for 

Landau-Zener two level system. [1]  

 

2. Master Equation for the Quantum Amplitude in Two Level Systems  

In this section, we consider a two levels quantum system. The idea is to find the interaction 

potential from the given quantum amplitude forms. This will be a type of reconstruction 

differential equations. Let us start our study with a time evolution equation for amplitude, 

gives as 𝑎𝑚(𝑡) and satisfies the following coupled first order system of scheme.  

 
𝑖ℏ
𝑑𝑎𝑚
𝑑𝑡

=∑

𝑘

𝑎𝑘(𝑡)𝑉𝑚𝑘(𝑡)𝑒
𝑖𝜔12𝑡 . 

(1) 

  

We represent the potential as a simple matrix with time dependent element: 

𝑉𝑚𝑘 = [
𝑉11 𝑉12
𝑉21 𝑉22] 

for 𝑚, 𝑘 = 1,2.  

 

This potential matrix has elements as functions of time. We supposed that we have two 

levels so the summation index is running from k=1 up to 2: 
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𝑖ℏ
𝑑𝑎1(𝑡)

𝑑𝑡
= 𝑎1(𝑡)𝑉11(𝑡) + 𝑎2(𝑡)𝑒

𝑖𝜔12𝑡𝑉12(𝑡). (2) 

 
𝑖ℏ
𝑑𝑎2(𝑡)

𝑑𝑡
= 𝑎1(𝑡)𝑒

−𝑖𝜔21𝑡𝑉21(𝑡) + 𝑎2(𝑡)𝑉22(𝑡). (3) 

 

We assume that 𝜔12 = −𝜔21 = 𝜔, 𝑉11(𝑡) = 𝑉22(𝑡) = 𝑉(𝑡) ∈ ℝ as a real function and 

𝑉12(𝑡) = 𝑊(𝑡), 𝑉21(𝑡) = 𝑊̅(𝑡) where "bar" indicates complex conjugate. 

 

We reduce the pair of equations presented as above to the single second-order differential 

equations for amplitude, called Master equation: 

𝑎1
′′(𝑡) − 𝑎1

′ (𝑡)(−𝑖𝜔 + 2𝑉(𝑡) +
𝑊′(𝑡)

𝑊(𝑡)
) − 𝑎1(𝑡)(𝑖𝜔𝑉(𝑡) +𝑊2(𝑡) − 𝑉2(𝑡) + 𝑉′(𝑡)

−
𝑉(𝑡)𝑊′(𝑡)

𝑊(𝑡)
) = 0. 

(4) 

 

where W(t) is considered as a complex potential as a result, we suppose that 

𝑊(𝑡) ≡ 𝑊 = 𝑊1 + 𝑖𝑊2 and 𝑉(𝑡) ≡ 𝑉. 

 

The aim is to find (𝑊1,𝑊2, 𝑉) when we have data about 𝑎1(𝑡). Note that we can also find 

a similar equation for 𝑎2(𝑡), but in this work we focus only on the first equation for 𝑎1(𝑡).  

 

3. Reconstruction Technique to Find the Potentials from Different Amplitude 

Models 

In this section, we will reconstruct the potentials for different examples of amplitude. In labs 

we can find the data about the density of state (electron density) which is proportional to 

|𝜓|2. For two level systems, |𝜓|2 is proportional to amplitude ∑𝑖 |𝑎𝑖(𝑡)|
2, it means when 

we measure the amplitude of transition (low density or high density) we are provided by the 

orbital forms as a question of how to describe the potential interaction when type of 

interaction or potentials are unknown. This is our main motivation to find V(t) and W(t) from 

master equation (4).  

 

3.1 Harmonic Oscillator Amplitude 

We start the reconstruction techniques with a simple harmonic oscillator quantum amplitude, 

the system can describe time oscillations of an electron in a uniform magnetic field 𝐵⃗⃗ = 𝐵𝑘̂ 

in "Z" representation of pauli’s matrices. The general form of second order ordinary 

differential equation (ODE) of simple harmonic oscillator is given by: 

 𝑎′′(𝑡) + 𝑎(𝑡) = 0. (5) 

 

By comparing equation (5) with equation (4), we get the following equations: 
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2𝑉 +

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
= 0, 

(6) 

 𝜔|𝑊|2 = 𝑊1𝑊2
′ −𝑊1

′𝑊2, (7) 

 
𝑉 (

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
) − |𝑊|2 + 𝑉2 − 𝑉′ = 1. 

(8) 

 

By dividing equation (7) by 𝑊1
2, we obtain: 

𝜔(1 +
𝑊2

2

𝑊1
2) =

𝑑

𝑑𝑡
(
𝑊2

𝑊1
), 

 

by integrating the above equation, we obtain the relation between 𝑊1 and 𝑊2 as: 

 𝑊2 = 𝑊1tan(𝜔𝑡). (9) 

 

Equation (9) helps us to rewrite the potential 

𝑊 =
𝑊1

cos(𝜔𝑡)
𝑒𝑖𝜔𝑡 

where 𝑊1 can be a function of time. By plugging (6) and (9) in to the equation (8) we 

obtain:  

 𝑉2 + (𝑊1
2 +𝑊2

2) + 𝑉′ = −1, (10) 

 

substitute (6) and (9) in (10), we get:  

 
    𝑊1

′′ =
1

4𝑊1(𝑡)
(4sec2(𝜔𝑡)𝑊1

2 − 3𝜔2sec2(𝜔𝑡)𝑊1
2 + 

 

 4cos(2𝜔𝑡)sec2(𝜔𝑡)𝑊1
2 −𝜔2cos(2𝜔𝑡)sec2(𝜔𝑡)𝑊1

2 + 8sec2(𝜔𝑡)𝑊1
4

+ 4𝜔tan(𝜔𝑡)𝑊1𝑊1
′ + 6𝑊1

′2). (11) 

 

The equation (11) is a non-linear second order ODE. The general solution cannot be found 

easily. Instead of that, we can solve it by the iteration method. To do that, first we find the 

zeroth order approximated solution by omitting all terms 𝑂(𝑊1
2) and then we replace that 

solution in the non-linear terms and we find 𝑊1
(1)

. After passing all these steps, we obtain:  

 
𝑊1 = 𝑒

1
4
𝐴(−2𝐵+9𝐴)(𝐶1 + 𝑒𝐵𝐴𝐶2) + 𝑡∫

𝑡

0

1

8
𝑒
1
4
𝐵(−2𝐴+9𝐵)𝐻)𝑑𝑡, 

(12) 

where: 

𝐴 =
1

2
tan(𝜔𝑡)(√9 +

−8 + 𝜔

𝜔2
− √24 −

4

𝜔2
+
(−4 + 𝜔)cos(2𝜔𝑡)

𝜔2
+ 9sec2(𝜔𝑡) + 12tan(𝜔𝑡)), 
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𝐵 = √24 −
4

𝜔2
+
(−4 + 𝜔)cos(2𝜔𝑡)

𝜔2
+ 9sec2(𝜔𝑡)tan(𝜔𝑡). 

𝐻 = (16𝑒−𝐴𝐵+
9𝐵2

2 (𝐶1 + 𝑒𝐴𝐵𝐶2)
3sec2(𝜔𝑡) − 2(𝐶1 + 𝑒𝐴𝐵𝐶2)(−4 + 3𝜔2 + 

(−4 + 𝜔2)cos(2𝜔𝑡))sec2(𝜔𝑡) + 

3(𝐶1(𝐵(𝐴
′ − 9𝐵′) + 𝐴𝐵′) − 𝑒𝐴𝐵𝐶2(𝐵𝐴

′ + (𝐴 + 9𝐵)𝐵′))2

𝐶1 + 𝑒𝐴𝐵𝐶2
+ 4𝜔tan(𝜔𝑡)(−𝐶1(𝐵(𝐴

′

− 9𝐵′) + 𝐴𝐵′) + 𝑒𝐴𝐵𝐶2(𝐵𝐴
′ + (𝐴 + 9𝐵)𝐵′)). 

 

We can use the same approximation technique to find V(t). 

 

For that we use 𝑊1 = 𝑊1
(0)
+𝑊1

(1)
 and 𝑊1

2 = (𝑊1
(0)
+𝑊1

(1)
)2 = (𝑊1

(0)
)2 + (𝑊1

(1)
)2 +

2(𝑊1
(0)
)(𝑊1

(2)
) << 1, we substitute (9) in (10): 

𝑉2 + (𝑊1
2sec2(𝜔𝑡)) + 𝑉′ = −1, 

 

At zero approximation when the second term is omitted, we have: 

𝑉(0)2 + 𝑉(0)′ = −1, 
 

The exact solution for this ODE is: 

𝑉(0) = −tan(𝜔𝑡) + 𝐶1. 
 

For the first approximation, we get: 

 

𝑉(1) = −𝑡 + tan(𝜔𝑡) − 𝐶1 + 𝐶2. 
 

The total potential is obtained as:  

 𝑉 = 𝑉(0) + 𝑉(1) = −𝑡 + 𝐶2. (13) 

 

   

 The potential grows as time increases. The 

𝑉𝑖𝑗 =

[
 
 
 
 
 𝑉(𝑡)(1)

𝑊1

cos(𝜔𝑡)
𝑒𝑖𝜔𝑡

𝑊̅1

cos(𝜔𝑡)
𝑒−𝑖𝜔𝑡 𝑉(𝑡)(1)

]
 
 
 
 
 

 

this matrix is Hermitian, finally the matrix for order "n" appears as radial solution for 

Laplace equation, etc. 
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Figure 1: W(t) and V(t) versus t, V(t) extremely linearly decreases and W(t) exponentially increases. 

  

3.2 Bessel’s Quantum Amplitude 

 Secondly, we apply the above method to Bessel’s quantum amplitude, such amplitudes 

appear in cylindrical quantum cavities. The general ODE form for Bessel’s equation is:  

 
𝑎′′(𝑡) + 𝑎′(𝑡)

1

𝑡
+ 𝑎(𝑡)(1 −

𝑛2

𝑡2
) = 0. 

(14) 

 

By comparing equation (14) with equation (4), we get the following equations: 

 
2𝑉 +

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
=
−1

𝑡
, 

(15) 

 𝜔|𝑊|2 = 𝑊1𝑊2
′ −𝑊1

′𝑊2, (16) 

 
𝑉 (

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
) − |𝑊|2 + 𝑉2 − 𝑉′ = (1 −

𝑛2

𝑡2
). 

(17) 

  

We calculate the potential W using the previous section assumption as follows: 

𝑊 =
𝑊1

cos(𝜔𝑡)
𝑒𝑖𝜔𝑡 

and by using this assumption, we have: 

|𝑊|2 = 𝑊1
2 +𝑊2

2 =
𝑊1

2

cos2(𝜔𝑡)
, 

 

for the sake of simplicity, we take |𝑊|2 = 𝐴2 , then we obtain the 𝑊1 as:  

 𝑊1 = 𝐴cos(𝜔𝑡). (18) 
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 By substituting equation (15) in equation (17) we obtain:  

 
𝑉′ + 𝑉2 +

1

𝑡
𝑉 −

𝑛2

𝑡2
+ 𝐴2 + 1 = 0. (19) 

   

This is Riccati equation and can be integrated analytically, we obtain:  

 

𝑉 =
−((−

1
2
𝑖√−1 − 𝐴2(𝑌𝑛−1(−𝑖√−1 − 𝐴2𝑡) − 𝑌𝑛+1(−𝑖√−1 − 𝐴2𝑡))

−𝑌𝑛(−𝑖√−1 − 𝐴2𝑡) − 𝐽𝑛(−𝑖√−1 − 𝐴2𝑡)𝐶1
− 

1
2 𝑖√−1 − 𝐴2(𝐽𝑛−1(−𝑖√−1 − 𝐴

2𝑡) − 𝐽𝑛+1(−𝑖√−1 − 𝐴2𝑡)))

−𝑌𝑛(−𝑖√−1 − 𝐴2𝑡) − 𝐽𝑛(−𝑖√−1 − 𝐴2𝑡)𝐶1
. 

(20) 

 

   

  

 

 

 

   

 

 

 

 

 

 

 

 
Figure 2:  V for Bessel’s is negative, it increases until it reaches approximately -5 and it remains constant for a 

period of time, after that it decreases.  

  

3.3 Hermit Quantum Amplitude 

The third example is Hermit quantum amplitude. It can be appeared as a solution to the 

harmonic oscillator in quantum mechanics, the general ODE form for Hermit equation is:  

 𝑎′′(𝑡) − 𝑎′(𝑡)2𝑡 + 𝑎(𝑡)2𝑛 = 0. (21) 

 

We can find a set of differential equations just by following the same methodology:  

 
2𝑉 +

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
= 2𝑡, 

(22) 

 𝜔|𝑊|2 = 𝑊1𝑊2
′ −𝑊1

′𝑊2, (23) 
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𝑉 (

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
) − |𝑊|2 + 𝑉2 − 𝑉′ = 2𝑛. 

(24) 

 

We obtain a Riccati equation by substituting equation (22) in equation (24) as:  

 𝑉′ + 𝑉2 − 2𝑡𝑉 + 2𝑛 + 𝐴2 = 0. (25) 

 

We get the potential V by solving the equation (25) as:  

𝑉 =

−(((2𝐴 + 2𝑛)𝐶1𝐻−1+1
2
(2𝐴+2𝑛)

(𝑡) + (−2𝐴 − 2𝑛)𝑡1𝐹1[1 +
1
4
(−2𝐴 − 2𝑛);

3
2
; 2𝑡])

(−𝐶1𝐻1
2(2𝐴+2𝑛)

(𝑡)−1𝐹1(
1
4 (−2𝐴 − 2𝑛);

1
2 ; 2𝑡))

. 

(26) 

 

3.4 Laguerre Quantum Amplitude 

The fourth example is Laguerre quantum amplitude which appears in Hydrogen atomic 

spectrum. The general ODE form for Laguerre function is:  

 
𝑎′′(𝑡) − 𝑎′(𝑡)(

1

𝑡
− 1) + 𝑎(𝑡)

𝑛

𝑡
= 0. (27) 

 

By comparing equation (27) with equation (4), we get:  

 
2𝑉 +

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
= (1 −

1

𝑡
), 

(28) 

 𝜔|𝑊|2 = 𝑊1𝑊2
′ −𝑊1

′𝑊2, (29) 

 
𝑉 (

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
) − |𝑊|2 + 𝑉2 − 𝑉′ =

𝑛

𝑡
. 

(30) 

 

We obtain a Riccati equation by substituting equation (28) in equation (30) as:  

 
𝑉′ + 𝑉2 − (1 −

1

𝑡
)𝑉 +

𝑛

𝑡
+ 𝐴2 = 0. (31) 

 

By solving the equation (31), we get the potential V as:  

 
𝑉 =

𝐶1 ∗ (𝑓 + 𝑔) + ℎ

𝑘
. 

(32) 

  

where, 

𝑓 = (
1

2
−
1

2
√1 − 4𝐴2)𝑒

𝑡
2
−
1
2
√1−4𝐴2𝑡𝑈(−

1 − √1 − 4𝐴2 + 2𝑛

2√1 − 4𝐴2
, 1, √1 − 4𝐴2𝑡), 
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𝑔 =
1

2
𝑒
𝑡
2
−
1
2
√1−4𝐴2𝑡(1 − √1 − 4𝐴2 + 2𝑛)𝑈(1 −

1 − √1 − 4𝐴2 + 2𝑛

2√1 − 4𝐴2
, 2, √1 − 4𝐴2𝑡), 

ℎ = (
1

2
−
1

2
√1 − 4𝐴2)𝑒

𝑡
2
−
1
2
√1−4𝐴2𝑡𝐿1−√1−4𝐴2+2𝑛

2√1−4𝐴2

(√1 − 4𝐴2𝑡)

− √1 − 4𝐴2𝑒
𝑡
2
−
1
2
√1−4𝐴2𝑡𝐿

−1+
1−√1−4𝐴2+2𝑛

2√1−4𝐴2

1 (√1 − 4𝐴2𝑡)), 

𝑘 = (−𝑒
𝑡
2
−
1
2
√1−4𝐴2𝑡𝐶1𝑈(−

1 − √1 − 4𝐴2 + 2𝑛

2√1 − 4𝐴2
, 1, √1 − 4𝐴2𝑡

− 𝑒
𝑡
2
−
1
2
√1−4𝐴2𝑡𝐿1−√1−4𝐴2+2𝑛

2√1−4𝐴2

(√1 − 4𝐴2𝑡)). 

 

3.5 Modified Bessel’s Amplitude 

The last example is Modified Bessel’s amplitude. The general ODE form for Modified 

Bessel’s equation is:  

 
𝑎′′(𝑡) + 𝑎′(𝑡) (

1

𝑡
) − 𝑎(𝑡) (1 +

𝑛2

𝑡2
) = 0. 

(33) 

 

We obtain the following equation by comparing equation (33) with equation (4):  

 
2𝑉 +

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
= (−

1

𝑡
), 

(34) 

 𝜔|𝑊|2 = 𝑊1𝑊2
′ −𝑊1

′𝑊2, (35) 

 
𝑉 (

𝑊1
′𝑊1 +𝑊2

′𝑊2

|𝑊|2
) − |𝑊|2 + 𝑉2 − 𝑉′ = −(1 +

𝑛2

𝑡2
). 

(36) 

 

By substituting equation (34) in equation (36), we obtain a Riccati equation as: 

 
𝑉′ + 𝑉2 −

1

𝑡
𝑉 + 𝐴2 −

𝑛2

𝑡2
− 1 = 0. 

(37) 

  

By solving the equation (37), we get the potential V as:  

 

𝑉 = −
−
1
2 𝑖√1 − 𝐴2(𝑌𝑛−1(−𝑖√−1 − 𝐴

2𝑡) − 𝑌𝑛+1(−𝑖√−1 − 𝐴2𝑡))

−𝑌𝑛(−𝑖√−1 − 𝐴
2𝑡) − 𝐽𝑛(−𝑖√−1 − 𝐴

2𝑡)𝐶1
− 

−1
2 𝑖√1 − 𝐴2(𝐽𝑛−1(−𝑖√−1 − 𝐴2𝑡) − 𝑌𝑛+1(−𝑖√−1 − 𝐴2𝑡))𝐶1

−𝑌𝑛(−𝑖√−1 − 𝐴2𝑡) − 𝐽𝑛(−𝑖√−1 − 𝐴2𝑡)𝐶1
. 

(38) 
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4. Distance Between Two Nearby Quantum States in Hilbert Space for Two Level 

System 

In section 3, we used the amplitude to calculate the potential but, in this section, we will use 

the amplitude to obtain the distance between two nearby quantum states for two level system. 

This work is a non-relativistic version of the work done by Takayanagi in CFT [15]. If we 

have a perturbation parameter 𝜆 (for example a very small external magnetic field), the 𝜓 

will be function of 𝜆 up to any order. All those 𝜓(𝜆) are living at the Hilbert space and over 

time we have a little change in parameter, this change in the 𝜆 leads to the quantum transition 

transition from 𝜓(𝜆) to 𝜓(𝜆 + 𝛿𝜆). Here we want to measure the distance between 𝜓(𝜆) 
and 𝜓(𝜆 + 𝛿𝜆) and how close they are to each other. 

 

The higher correction formula of perturbation theory for time dependent potential is: 

 𝑎𝑚(𝑡) = 𝑎𝑚
(0)
+ 𝜆𝑎𝑚

(1)
+ 𝜆2𝑎𝑚

(2)
+. . .,  

     𝑎𝑡  𝑚 = 1 ,    𝑎1(𝑡) = 𝛿1𝑛 + 𝜆𝑎1
(1)
+ 𝜆2𝑎1

(2)
+. . ., (39) 

      𝑎𝑡  𝑚 = 2 ,    𝑎2(𝑡) = 𝛿2𝑛 + 𝜆𝑎2
(1)
+ 𝜆2𝑎2

(2)
+. . ., (40) 

 

We assume that at t=0, the system at n=1 therefore prepared 𝛿1𝑛 = 1 and 𝛿2𝑛 = 0. The 

wavefunction of the ground state for two level system is:  

 𝜓1(𝜆) = (𝐴 + 𝐵𝜆)𝜙1
(0)
+ (𝜆𝐶)𝜙2

(0)
, (41) 

 

where 

𝐴 = 𝑒
−𝑖𝐸1𝑡
ℏ , 𝐵 = 𝑒

−𝑖𝐸1𝑡
ℏ ∫

𝑡

0

𝑉12(𝑡
′)𝑒−𝑖𝜔12𝑡

′
𝑑𝑡′ 

and 

𝐶 = 𝑒
−𝑖𝐸2𝑡
ℏ ∫

𝑡

0

𝑉21(𝑡
′)𝑒−𝑖𝜔21𝑡

′
𝑑𝑡′. 

We define an auxiliary function 

𝑓12(𝑡, 𝜔12) = ∫
𝑡

0

𝑉12(𝑡
′)𝑒−𝑖𝜔12𝑡

′
𝑑𝑡′ 

and 

𝑓21(𝑡, 𝜔21) = ∫
𝑡

0

𝑉21(𝑡
′)𝑒−𝑖𝜔21𝑡

′
𝑑𝑡′. 

 

Distance between two nearby quantum states in Hilbert space can be obtained by the inner 

product quantity as follows:  

 < 𝜓1(𝜆)|𝜓1(𝜆 + 𝛿𝜆) >=< 𝜓1(𝜆)|𝜓1(𝜆) > +𝛿𝜆 < 𝜓1(𝜆)|𝐵𝜙1
(0)
+ 𝐶𝜙2

(0)
> 

= |𝐴|2 + 𝜆2|𝐵|2 + (𝐴∗𝐵 + 𝐴𝐵∗) + 𝜆2|𝐶|2 + 𝛿𝜆(𝐵𝐴∗ + 𝜆2|𝐵| + 𝜆|𝐶|2). (42) 
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The result of inner product will contain real part and imaginary part as: 

< 𝜓1(𝜆)|𝜓1(𝜆 + 𝛿𝜆) >= 𝑅𝑒 + 𝑖𝐼𝑚, 
 

where, 

𝑅𝑒 = 1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)

ℏ
+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2
+ 𝛿𝜆 (

𝜆2|𝑓12|
2

ℏ2
+
𝜆|𝑓21(𝑡, 𝜔21)|

2

ℏ2
), 

𝐼𝑚 = 𝛿𝜆 (−
𝑓12(𝑡, 𝜔12)

ℏ
). 

 

By squaring both sides in (42) and dividing it by 𝑎2,we obtain the final expression as: 

 

| < 𝜓1(𝜆)|𝜓1(𝜆 + 𝛿𝜆) > |2

𝑎2
= 1 +

2 (
𝜆2|𝑓12|

2

ℏ2
+
𝜆|𝑓21(𝑡, 𝜔21)|

2

ℏ2
)

1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2

𝛿𝜆 + 

 

(
2𝜆3|𝑓12|

2|𝑓21(𝑡, 𝜔21)|  𝜆
4|𝑓12|

4 + 𝜆2|𝑓21(𝑡, 𝜔21)|
4

ℏ4
+
|𝑓12(𝑡, 𝜔12)|

2

ℏ2
)

1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2

𝛿𝜆2. 

 

where, 

(1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)

ℏ
+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2
+ 𝛿𝜆 (

𝜆2|𝑓12|
2

ℏ2
+
𝜆|𝑓21(𝑡, 𝜔21)|

2

ℏ2
))

2

≡ 𝑎2. 

 

 

The distance between the 𝜓1(𝜆) and 𝜓1(𝜆 + 𝛿𝜆) is:  

| < 𝜓1(𝜆)|𝜓1(𝜆 + 𝛿𝜆) > |

𝑎
= 

√
  
  
  
  
  
  
  
  
 

1 +
2(
𝜆2|𝑓12|

2

ℏ2
+
𝜆|𝑓21(𝑡, 𝜔21)|

2

ℏ2
)

1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2

𝛿𝜆

+
(
2𝜆3|𝑓12|

2|𝑓21(𝑡, 𝜔21)|  𝜆
4|𝑓12|

4 + 𝜆2|𝑓21(𝑡, 𝜔21)|
4

ℏ4
+
|𝑓12(𝑡, 𝜔12)|

2

ℏ2
)

1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2

𝛿𝜆2

. 

(43) 

  

Using Taylor’s series expansion, we obtain: 
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| < 𝜓1(𝜆)|𝜓1(𝜆 + 𝛿𝜆) > |

𝑎
= 1 +

1

2
𝑎𝛿𝜆 + [

𝑏

2
−
𝑎2

8
]𝛿𝜆2+. . . = 1 +

1

2
𝑎𝛿𝜆 + 𝜒𝐹𝛿𝜆

2, 

 

we define the fidelity susceptibility 𝜒𝐹 as a coefficient to the (𝛿𝜆2) term:  

 

𝜒𝐹 =
(
2𝜆3|𝑓12|

2|𝑓21(𝑡, 𝜔21)|  𝜆
4|𝑓12|

4 + 𝜆2|𝑓21(𝑡, 𝜔21)|
4

ℏ4
+
|𝑓12(𝑡, 𝜔12)|

2

ℏ2
)

2 (1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2
)
2

−
(
𝜆2|𝑓12|

2

ℏ2
+
𝜆|𝑓21(𝑡, 𝜔21)|

2

ℏ2
)
2

2 (1 +
𝜆2|𝑓12|

2

ℏ2
−
2𝜆𝑓12

𝑠 (𝑡, 𝜔12)
ℏ

+
𝜆2|𝑓21(𝑡, 𝜔21)|

2

ℏ2
)
2. 

(44) 

 

5. Distance Between Two Nearby Quantum States in Hilbert Space for Landau-

Zener Two Level Model  

Landau-Zener is a transition between two energy levels with time-dependent Hamiltonian, it 

happens when the system exposed to periodic frequency with large amplitude (parameter F) 

gives 𝜒𝐹  in equation (44). Those transitions cause a phase difference 𝛿𝐹 which leads to 

constructive or destructive interference. Our work in this section is to obtain the phase 

difference for Landau-Zener model by measuring the distance between 𝜓(𝐹) and 𝜓(𝐹 +
𝛿𝐹) and how close they are to each other. 

The wavefunction of the ground state for two level system is:  

 

𝜓0 =∑

2

𝑘=1

𝑎𝑘0𝜓𝑘
(0)

= 𝑎00𝜓0
(0)
+ 𝑎10𝜓1

(0)
. 

(45) 

 

For the coefficients, we have: 

 
    for  level  𝑚 ,    𝑖ℏ

𝑑𝑎𝑚
𝑑𝑡

= 𝐹𝑚𝑛𝑒
𝑖(𝜔𝑚𝑛−𝜔)𝑡𝑎𝑛 = 𝐹𝑚𝑛𝑒

𝑖𝛼𝑡𝑎𝑛, (46) 

 
for  level  𝑛 ,    𝑖ℏ

𝑑𝑎𝑛
𝑑𝑡

= 𝐹𝑚𝑛
∗ 𝑒𝑖𝜖𝑡𝑎𝑚, (47) 

 

where 𝑒𝑖𝜖𝑡𝑎𝑛 = 𝑏𝑛. 
 

We substitute equation (45) in (46), we obtain the ordinary differential equation as:  

 𝑑2𝑏𝑛
𝑑𝑡2

− 𝑖𝜖
𝑑𝑏𝑛
𝑑𝑡

+
|𝐹𝑚𝑛|

2

ℏ2
𝑏𝑛 = 0. 

(48) 
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If we suppose that |𝐹𝑚𝑛|
2 =constant, we can solve equation (47) and find:  

 

𝑏𝑛 = 𝑏+ 𝑒
𝑖(
𝜖
2
+√

𝜖2

4
+
|𝐹𝑚𝑛|

2

ℏ2
)𝑡
+ 𝑏− 𝑒

𝑖(
𝜖
2
−√

𝜖2

4
+
|𝐹𝑚𝑛|

2

ℏ2
)𝑡
,  

 

𝑎𝑛 = (𝑏+ 𝑒
𝑖(
𝜖
2
+√

𝜖2

4
+
|𝐹𝑚𝑛|

2

ℏ2
)𝑡
+ 𝑏− 𝑒

𝑖(
𝜖
2
−√

𝜖2

4
+
|𝐹𝑚𝑛|

2

ℏ2
)𝑡
)𝑒−𝑖𝜖𝑡. 

(49) 

 

Substituting 𝑎00 ≡ 𝑎0 and 𝑎10 ≡ 𝑎1 in (44), we obtain:  

 
𝜓0 = (−

𝑖𝐹10
∗

ℏΩ
𝑒−𝑖

𝜖
2
𝑡sin(Ω𝑡))𝜓0

(0)
+ (𝑒𝑖

𝜖
2
𝑡cos(Ω𝑡)) −

𝑖𝜖

2Ω
𝑒−𝑖

𝜖
2
𝑡sin(Ω𝑡))𝜓1

(0)
. 

(50) 

 

where 

Ω = √
𝜖2

4
+
|𝐹𝑚𝑛|

2

ℏ2
. 

 

The distance between the 𝜓(𝐹) and 𝜓(𝐹 + 𝛿𝐹) is:  

< 𝜓0(𝐹)|𝜓0(𝐹 + 𝛿𝐹) >

< 𝜓0(𝐹)|𝜓0(𝐹) >
= √1 +

4𝐻sin(𝜖𝑡)

(1 − 𝑀)
𝛿𝐹 +

𝐺2cos2(𝜖𝑡) + 𝐻2sin2(𝜖𝑡)

(1 − 𝑀)2
𝛿𝐹2. 

(51) 

where, 

𝐻 =

−8𝜖𝐹3𝑡cos (√𝜖2 +
4𝐹2

ℏ2
𝑡) + 2𝜖𝐹√𝜖2 +

4𝐹2

ℏ2
ℏ2sin (√𝜖2 +

4𝐹2

ℏ2
𝑡)

(4𝐹2 + 𝜖2ℏ2)2
, 

𝐺 =

−8𝜖𝐹3𝑡 − 2𝜖3𝐹ℏ2𝑡 + 2𝜖3𝐹ℏ2𝑡cos (√𝜖2 +
4𝐹2

ℏ2
𝑡) + 2𝜖𝐹√𝜖2 +

4𝐹2

ℏ2
ℏ2sin (√𝜖2 +

4𝐹2

ℏ2
𝑡)

(4𝐹2 + 𝜖2ℏ2)2
, 

𝑀 =

𝜖sin(𝜖𝑡)sin (√𝜖2 +
4𝐹2

ℏ2
𝑡)

√𝜖2 +
4𝐹2

ℏ2
𝑡

. 

 

We continue our manipulations:  

 
< 𝜓0(𝐹)|𝜓0(𝐹 + 𝛿𝐹) >

< 𝜓0(𝐹)|𝜓0(𝐹) >

= 1 +
2𝐻sin(𝜖𝑡)

(1 − 𝑀)
𝛿𝐹 + [

𝐺2cos2(𝜖𝑡) + 𝐻2sin2(𝜖𝑡)

2(1 − 𝑀)2
−
2𝐻2sin2(𝜖𝑡)

(1 − 𝑀)2
]𝛿𝐹2+. .. 
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Finally, we suggest the fidelity susceptibility 𝜒𝐹 as:  

 
𝜒𝐹 =

𝐺2cos2(𝜖𝑡) + 𝐻2sin2(𝜖𝑡)

2(1 −𝑀)2
−
2𝐻2sin2(𝜖𝑡)

(1 − 𝑀)2
. 

(52) 

 

6. Conclusion 

In this work, we studied time dependent perturbation theory in two level quantum system and 

its applications. The single ODE of quantum amplitude of two-level system was derived and 

based on that, we reconstruct potential function V(t) and W(t) from a given quantum 

amplitude. Moreover, we found the distance between two nearby quantum states in Hilbert 

space and the distance for Landau-Zener effect as a two-level system. 
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8. Appendix 

This appendix includes the potentials W for all models examples in section 3. 

The potential W for Bessel’s equation is obtained as: 

 𝑊 = √𝐷 + 𝐸 + 𝐹 + 𝐺 (53) 

 

where: 

𝐷 =
−1+

𝑛2

𝑡2
+(𝑖√−1−𝐴2𝑡)−(𝑌𝑛−1(−𝑖√−1−𝐴

2𝑡)−𝑌𝑛+1(−𝑖√−1−𝐴
2𝑡)+(𝐽𝑛−1(−𝑖√−1−𝐴

2𝑡)−𝐽𝑛+1(−𝑖√−1−𝐴
2𝑡)𝐶1))

2𝑡(𝑌𝑛(−𝑖√−1−𝐴
2𝑡))

  

 

𝐸 =
𝑌𝑛(−𝑖√−1−𝐴

2𝑡)𝐶1)−(−1−𝐴
2)(𝑌𝑛−1(−𝑖√−1−𝐴

2𝑡)−𝑌𝑛+1(−𝑖√−1−𝐴
2𝑡)+(𝐽𝑛−1((−𝑖√−1−𝐴

2𝑡)−𝐽𝑛+1((−𝑖√−1−𝐴
2)𝑡)𝐶1)

2)

4(𝑌𝑛(−𝑖√−1−𝐴
2𝑡)+𝐽𝑛(−𝑖√−1−𝐴

2𝑡)𝐶1)
2

  

 

𝐹 =

(𝑖√−1−𝐴2(𝑌𝑛−1(𝑖√−1−𝐴
2𝑡)−𝑌𝑛+1(−𝑖√−1−𝐴

2)𝑡)+(𝐽𝑛−1(−𝑖√−1−𝐴
2)𝑡)−𝐽𝑛+1(−𝑖√−1−𝐴

2𝑡))𝐶1)

(
−1

2
𝑖√−1−𝐴2)(𝑌𝑛−1((−𝑖√−1−𝐴

2)𝑡)

(2(𝑌𝑛((−𝑖√−1−𝐴
2)𝑡)+𝐽𝑛((−𝑖√−1−𝐴

2)𝑡)𝐶1))
2)

−  

         
𝑌𝑛+1((−𝑖√−1−𝐴

2)𝑡))−1/2(−𝑖√−1−𝐴2)(𝐽𝑛−1((−𝑖√−1−𝐴
2))𝑡)[−1+𝑛,(−𝑖√−1−𝐴2)𝑡]

(2(𝑌𝑛((−𝑖√−1−𝐴
2)𝑡)+𝐽𝑛((−𝑖√−1−𝐴

2)𝑡)𝐶1))
2)

−  

         
𝑌𝑛+1((−𝑖√−1−𝐴

2)𝑡))−1/2(−𝑖√−1−𝐴2)(𝐽𝑛−1(−𝑖√−1−𝐴
2)𝑡)−𝐽𝑛+1((−𝑖√−1−𝐴

2)𝑡))𝐶1)))

(2(𝑌𝑛((−𝑖√−1−𝐴
2)𝑡)+𝐽𝑛((−𝑖√−1−𝐴

2)𝑡)𝐶1))
2)

  

𝐺 =
((𝑖√−1−𝐴2)(

−1

2
(𝑖√−1−𝐴2)(𝑌𝑛−2(−𝑖√−1−𝐴

2)𝑡)−𝑌𝑛((−𝑖√−1−𝐴
2)𝑡))

(2(𝑌𝑛(−(𝑖√−1−𝐴
2)𝑡)+𝐽𝑛(−(𝑖√−1−𝐴

2)𝑡)𝐶1)))
+  

         
1

2
(𝑖√−1−𝐴2)(𝑌𝑛((−𝑖√−1−𝐴

2)𝑡)−𝑌𝑛+2((−𝑖√−1−𝐴
2)𝑡))+(

−1

2
(𝑖√−1−𝐴2)(𝐽𝑛−2((−𝑖√−1−𝐴

2)𝑡)

(2(𝑌𝑛(−(𝑖√−1−𝐴
2)𝑡)+𝐽𝑛(−(𝑖√−1−𝐴

2)𝑡)𝐶1)))
−  
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𝐽𝑛(−(−𝑖√−1−𝐴

2)𝑡))+
1

2
((−𝑖√−1−𝐴2)(𝐽𝑛((−𝑖√−1−𝐴

2)𝑡)−𝐽𝑛+2((−𝑖√−1−𝐴
2)𝑡)))𝐶1)))

(2(𝑌𝑛(−(𝑖√−1−𝐴
2)𝑡)+𝐽𝑛(−(𝑖√−1−𝐴

2)𝑡)𝐶1)))
  

 

The potential W for Hermit equation is obtained as: 

 𝑊 = 𝐴 (54) 

  

The potential W for Laguerre equation is obtained as:  
  

    𝑊 =

√
  
  
  
  
  

−(𝐴2(3(−4 + 𝑡 − √1 − 4𝐴2𝑡 + 2𝑛𝑡)1𝐹1(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 3; √1 − 4𝐴2)

(12(𝐶1𝑈(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 3; √1 − 4𝐴2𝑡) + 𝐿1

2
(−1+

1

√1−4𝐴2
+

2𝑛

√1−4𝐴2
)
(√1 − 4𝐴2)𝑡

+ 

            

√
  
  
  
  
  

(1 + 3√1 − 4𝐴2 + 2𝑛)𝑡1𝐹1(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 4; √1 − 4𝐴2)

(12(𝐶1𝑈(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 3; √1 − 4𝐴2𝑡) + 𝐿1

2
(−1+

1

√1−4𝐴2
+

2𝑛

√1−4𝐴2
)
(√1 − 4𝐴2)𝑡

− 

         

√
  
  
  
  
  

12(𝐶1𝑈(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 3; √1 − 4𝐴2𝑡))

(12(𝐶1𝑈(
−1 + 3√1 − 4𝐴2 − 2𝑛

2√1 − 4𝐴2
; 3; √1 − 4𝐴2𝑡) + 𝐿1

2
(−1+

1

√1−4𝐴2
+

2𝑛

√1−4𝐴2
)
(√1 − 4𝐴2)𝑡

 

                                                                                             (55) 

  

The potential W for Modified Bessel’s equation is obtained as:  

  

𝑊 = √
−((8𝑛 − 4𝐴2𝑡2)𝑌𝑛−2(−𝑖√−1 − 𝐴

2𝑡)

4𝑡2(𝑌𝑛(−𝑖√−1 − 𝐴2𝑡) + 𝐽𝑛(−𝑖√−1 − 𝐴2𝑡)𝐶1)
 

+
√

−8𝑖(2(−1 + 𝑛)𝑛 + (1 − 𝐴2𝑛)𝑡2)𝑌𝑛−1(−𝑖√−1 − 𝐴2𝑡2) − 4√1 − 𝐴2𝑡(−2𝑛 + 𝐴2𝑡2)𝐽𝑛−2(−𝑖√−1 − 𝐴2𝑡)𝐶1

√1 − 𝐴2𝑡

4𝑡2(𝑌𝑛(−𝑖√−1 − 𝐴
2𝑡) + 𝐽𝑛(−𝑖√−1 − 𝐴

2𝑡)𝐶1)
 

+
√

−8𝑖(2(−1 + 𝑛)𝑛 + (1 − 𝐴2𝑛)𝑡2)𝐽𝑛−1(−𝑖√−1 − 𝐴2𝑡2)𝐶1
√1 − 𝐴2𝑡

4𝑡2(𝑌𝑛(−𝑖√−1 − 𝐴2𝑡) + 𝐽𝑛−1(−𝑖√−1 − 𝐴2𝑡)𝐶1)
 

                                          

(56) 
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